AoPS Community

German National Olympiad 2008

www.artofproblemsolving.com/community/c3218508
by sqrtX, ZetaX

- Day 1

1 Find all real numbers x such that

$$
\sqrt{x+1}+\sqrt{x+3}=\sqrt{2 x-1}+\sqrt{2 x+1}
$$

$2 \quad$ The triangle $\triangle S F A$ has a right angle at F. The points P and Q lie on the line $S F$ such that the point P lies between S and F and the point F is the midpoint of the segment $[P Q]$. The circle k_{1} is th incircle of the triangle $\triangle S P A$. The circle k_{2} lies outside the triangle $\triangle S Q A$ and touches the segment $[Q A]$ and the lines $S Q$ and $S A$.
Prove that the sum of the radii of the circles k_{1} and k_{2} equals the length of $[F A]$.
3 Find all functions f defined on non-negative real numbers having the following properties:
(i) For all non-negative x it is $f(x) \geq 0$.
(ii) It is $f(1)=\frac{1}{2}$.
(iii) For all non-negative numbers x, y it is $f(y \cdot f(x)) \cdot f(x)=f(x+y)$.

- \quad Day 2

4 Find the smallest constant C such that for all real x, y

$$
1+(x+y)^{2} \leq C \cdot\left(1+x^{2}\right) \cdot\left(1+y^{2}\right)
$$

holds.
5 Inside a square of sidelength 1 there are finitely many disks that are allowed to overlap. The sum of all circumferences is 10 . Show that there is a line intersecting or touching at least 4 disks.
$6 \quad$ Find all real numbers x such that $4 x^{5}-7$ and $4 x^{13}-7$ are both perfect squares.

