

AoPS Community

German National Olympiad 2008

www.artofproblemsolving.com/community/c3218508 by sqrtX, ZetaX

-	Day 1
1	Find all real numbers x such that
	$\sqrt{x+1} + \sqrt{x+3} = \sqrt{2x-1} + \sqrt{2x+1}.$
2	The triangle $\triangle SFA$ has a right angle at F . The points P and Q lie on the line SF such that the point P lies between S and F and the point F is the midpoint of the segment $[PQ]$. The circle k_1 is th incircle of the triangle $\triangle SPA$. The circle k_2 lies outside the triangle $\triangle SQA$ and touches the segment $[QA]$ and the lines SQ and SA . Prove that the sum of the radii of the circles k_1 and k_2 equals the length of $[FA]$.
3	Find all functions f defined on non-negative real numbers having the following properties: (i) For all non-negative x it is $f(x) \ge 0$. (ii) It is $f(1) = \frac{1}{2}$. (iii) For all non-negative numbers x, y it is $f(y \cdot f(x)) \cdot f(x) = f(x + y)$.
-	Day 2
4	Find the smallest constant C such that for all real x, y
	$1 + (x + y)^2 \le C \cdot (1 + x^2) \cdot (1 + y^2)$
	holds.
5	Inside a square of sidelength 1 there are finitely many disks that are allowed to overlap. The sum of all circumferences is 10 . Show that there is a line intersecting or touching at least 4 disks.
6	Find all real numbers x such that $4x^5 - 7$ and $4x^{13} - 7$ are both perfect squares.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱 🙀