

## **AoPS Community**

## 2013 German National Olympiad

## **German National Olympiad 2013**

www.artofproblemsolving.com/community/c3218774 by sqrtX, eukleides1123, minusonetwelth

Day 1
1 Find all positive integers n such that n<sup>2</sup> + 2<sup>n</sup> is square of an integer.
2 Let α be a real number with α > 1. Let the sequence (a<sub>n</sub>) be defined as

a<sub>n</sub> = 1 + <sup>α</sup>√2 + <sup>α</sup>√3 + ... + <sup>α</sup>√n + <sup>α</sup>√n + 1

for all positive integers n. Show that there exists a positive real constant C such that a<sub>n</sub> < C for all positive integers n.</li>
3 Given two circles k<sub>1</sub> and k<sub>2</sub> which intersect at Q and Q'. Let P be a point on k<sub>2</sub> and inside of k<sub>1</sub> such that the line PQ intersects k<sub>1</sub> in a point X ≠ Q and such that the tangent to k<sub>1</sub> at X intersects k<sub>2</sub> in points A and B. Let k be the circle through A, B which is tangent to the line through P parallel to AB.

Prove that the circles  $k_1$  and k are tangent.

- Day 2
- 4 Let *ABCDEFGH* be a cube of sidelength *a* and such that *AG* is one of the space diagonals. Consider paths on the surface of this cube. Then determine the set of points *P* on the surface for which the shortest path from *P* to *A* and from *P* to *G* have the same length *l*. Also determine all possible values of *l* depending on *a*.
- **5** Five people form several commissions to prepare a competition. Here any commission must be nonempty and any two commissions cannot contain the same members. Moreover, any two commissions have at least one common member.

There are already 14 commissions. Prove that at least one additional commission can be formed.

**6** Define a sequence  $(a_n)$  by  $a_1 = 1, a_2 = 2$ , and  $a_{k+2} = 2a_{k+1} + a_k$  for all positive integers k. Determine all real numbers  $\beta > 0$  which satisfy the following conditions:

(A) There are infinitely pairs of positive integers (p,q) such that  $\left|\frac{p}{q} - \sqrt{2}\right| < \frac{\beta}{a^2}$ .

(B) There are only finitely many pairs of positive integers (p,q) with  $\left|\frac{p}{q} - \sqrt{2}\right| < \frac{\beta}{q^2}$  for which there is no index k with  $q = a_k$ .

AoPS Community

2013 German National Olympiad

Act of Problem Solving is an ACS WASC Accredited School.