AoPS Community

1972 Spain Mathematical Olympiad

Spain Mathematical Olympiad 1972

www.artofproblemsolving.com/community/c3218776
by parmenides51

- \quad Day 1

1 Let K be a ring with unit and M the set of 2×2 matrices constituted with elements of K. An addition and a multiplication are defined in M in the usual way between arrays. It is requested to:
a) Check that M is a ring with unit and not commutative with respect to the laws of defined composition.
b) Check that if K is a commutative field, the elements of M that have inverse they are characterized by the condition $a d-b c \neq 0$.
c) Prove that the subset of M formed by the elements that have inverse is a multiplicative group.

2 A point moves on the sides of the triangle $A B C$, defined by the vertices $A(-1.8,0), B(3.2,0)$, $C(0,2.4)$. Determine the positions of said point, in which the sum of their distance to the three vertices is absolute maximum or minimum.
https://cdn.artofproblemsolving.com/attachments/2/5/9e5bb48cbeefaa5f4c069532bf5605b9c1f5 png

3 Given a regular hexagonal prism. Find a polygonal line that, starting from a vertex of the base, runs through all the lateral faces and ends at the vertex of the face top, located on the same edge as the starting vertex, and has a minimum length.

4 The following sets of points are considered in the plane: $A=\{$ affixes of complexes z such that $\arg (z-(2+3 i))=\pi / 4\}, B=\{$ affixes of complexes z such that $\bmod (z-(2+i)<2\}$. Determine the orthogonal projection on the X axis of $A \cap B$.

- Day 2

5 Given two parallel lines r and r^{\prime} and a point P on the plane that contains them and that is not on them, determine an equilateral triangle whose vertex is point P, and the other two, one on each of the two lines.
https://cdn.artofproblemsolving.com/attachments/9/3/1d475eb3e9a8a48f4a85a2a311e1bda978e74 png

6 Given three circumferences of radii r, r^{\prime} and $r^{\prime \prime}$, each tangent externally to the other two, calculate the radius of the circle inscribed in the triangle whose vertices are their three centers.

7 Prove that for every positive integer n, the number

$$
A_{n}=5^{n}+2 \cdot 3^{n-1}+1
$$

is a multiple of 8 .
8 We know that $R^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i} \in R, i=1,2,3\right\}$ is a vector space regarding the laws of composition $\left(x_{1}, x_{2}, x_{3}\right)+\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right), \lambda\left(x_{1}, x_{2}, x_{3}\right)=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)$, $\lambda \in R$.
We consider the following subset of $R^{3}: L=\left\{\left(x_{1}, x 2, x_{3}\right) \in R^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$.
a) Prove that L is a vector subspace of R^{3}.
b) In R^{3} the following relation is defined $\bar{x} R \bar{y} \Leftrightarrow \bar{x}-\bar{y} \in L, \bar{x}, \bar{y} \in R^{3}$.

Prove that it is an equivalence relation.
c) Find two vectors of R^{3} that belong to the same class as the vector $(-1,3,2)$.

