AoPS Community

Spain Mathematical Olympiad 1973

www.artofproblemsolving.com/community/c3218781
by parmenides51

- Day 1

1 Given the sequence $\left(a_{n}\right)$, in which $a_{n}=\frac{1}{4} n^{4}-10 n^{2}(n-1)$, with $n=0,1,2, \ldots$ Determine the smallest term of the sequence.

2 Determine all solutions of the system

$$
\left\{\begin{array}{l}
2 x-5 y+11 z-6=0 \\
-x+3 y-16 z+8=0 \\
4 x-5 y-83 z+38=0 \\
3 x+11 y-z+9>0
\end{array}\right.
$$

in which the first three are equations and the last one is a linear inequality.
3 The sequence $\left(a_{n}\right)$ of complex numbers is considered in the complex plane, in which is:

$$
a_{0}=1, a_{n}=a_{n-1}+\frac{1}{n}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)^{n} .
$$

Prove that the sequence of the real parts of the terms of $\left(a_{n}\right)$ is convergent and its limit is a number between 0.85 and 1.15.

4 Let C and C^{\prime} be two concentric circles of radii r and r^{\prime} respectively. Determine how much the quotient r^{\prime} / r must be worth so that in the limited crown (annulus) through C and C^{\prime} there are eight circles $C_{i}, i=1, \ldots, 8$, which are tangent to C and to C^{\prime}, and also that C_{i} is tangent to C_{i+1} for $i=1, \ldots, 7$ and C_{8} tangent to C_{1}.

- Day 2

5 Consider the set of all polynomials of degree less than or equal to 4 with rational coefficients.
a) Prove that it has a vector space structure over the field of numbers rational.
b) Prove that the polynomials $1, x-2,(x-2)^{2},(x-2)^{3}$ and $(x-2)^{4}$ form a base of this space.
c) Express the polynomial $7+2 x-45 x^{2}+3 x^{4}$ in the previous base.

6 An equilateral triangle of altitude 1 is considered. For every point P on the interior of the triangle, denote by x, y, z the distances from the point P to the sides of the triangle.
a) Prove that for every point P inside the triangle it is true that $x+y+z=1$.
b) For which points of the triangle does it hold that the distance to one side is greater than the sum of the distances to the other two?
c) We have a bar of length 1 and we break it into three pieces. find the probability that with these pieces a triangle can be formed.

7 The two points $P(8,2)$ and $Q(5,11)$ are considered in the plane. A mobile moves from P to Q according to a path that has to fulfill the following conditions: The moving part of P and arrives at a point on the x-axis, along which it travels a segment of length 1 , then it departs from this axis and goes towards a point on the y axis, on which travels a segment of length 2 , separates from the y axis finally and goes towards the point Q. Among all the possible paths, determine the one with the minimum length, thus like this same length.

8 In a three-dimensional Euclidean space, by $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}$ are denoted the three orthogonal unit vectors on the x, y, and z axes, respectively.
a) Prove that the point $P(t)=(1-t) \overrightarrow{u_{1}}+(2-3 t) \overrightarrow{u_{2}}+(2 t-1) \overrightarrow{u_{3}}$, where t takes all real values, describes a straight line (which we will denote by L).
b) What describes the point $Q(t)=\left(1-t^{2}\right) \overrightarrow{u_{1}}+\left(2-3 t^{2}\right) \overrightarrow{u_{2}}+\left(2 t^{2}-1\right) \overrightarrow{u_{3}}$ if t takes all the real values?
c) Find a vector parallel to L.
d) For what values of t is the point $P(t)$ on the plane $2 x+3 y+2 z+1=0$?
e) Find the Cartesian equation of the plane parallel to the previous one and containing the point $Q(3)$.
f) Find the Cartesian equation of the plane perpendicular to L that contains the point $Q(2)$.

