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– Day 1

1 Given the sequence (an), in which an = 1
4n

4 − 10n2(n − 1), with n = 0, 1, 2, ... Determine the
smallest term of the sequence.

2 Determine all solutions of the system


2x− 5y + 11z − 6 = 0

−x+ 3y − 16z + 8 = 0

4x− 5y − 83z + 38 = 0

3x+ 11y − z + 9 > 0

in which the first three are equations and the last one is a linear inequality.

3 The sequence (an) of complex numbers is considered in the complex plane, in which is:

a0 = 1, an = an−1 +
1

n
(cos 45o + i sin 45o)n.

Prove that the sequence of the real parts of the terms of (an) is convergent and its limit is a
number between 0.85 and 1.15.

4 Let C and C ′ be two concentric circles of radii r and r′ respectively. Determine how much the
quotient r′/r must be worth so that in the limited crown (annulus) through C and C ′ there are
eight circlesCi , i = 1, ..., 8, which are tangent toC and toC ′ , and also thatCi is tangent toCi+1

for i = 1, ..., 7 and C8 tangent to C1 .

– Day 2

5 Consider the set of all polynomials of degree less than or equal to 4 with rational coefficients.
a) Prove that it has a vector space structure over the field of numbers rational.
b) Prove that the polynomials 1, x− 2, (x− 2)2, (x− 2)3 and (x− 2)4 form a base of this space.
c) Express the polynomial 7 + 2x− 45x2 + 3x4 in the previous base.

6 An equilateral triangle of altitude 1 is considered. For every point P on the interior of the triangle,
denote by x, y, z the distances from the point P to the sides of the triangle.
a) Prove that for every point P inside the triangle it is true that x+ y + z = 1.
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b) For which points of the triangle does it hold that the distance to one side is greater than the
sum of the distances to the other two?
c) We have a bar of length 1 and we break it into three pieces. find the probability that with these
pieces a triangle can be formed.

7 The two points P (8, 2) and Q(5, 11) are considered in the plane. A mobile moves from P to Q
according to a path that has to fulfill the following conditions: The moving part of P and arrives
at a point on the x-axis, along which it travels a segment of length 1, then it departs from this
axis and goes towards a point on the y axis, on which travels a segment of length 2, separates
from the y axis finally and goes towards the point Q. Among all the possible paths, determine
the one with the minimum length, thus like this same length.

8 In a three-dimensional Euclidean space, by −→u1 , −→u2 , −→u3 are denoted the three orthogonal unit
vectors on the x, y, and z axes, respectively.
a) Prove that the point P (t) = (1− t)−→u1 + (2− 3t)−→u2 + (2t− 1)−→u3 , where t takes all real values,
describes a straight line (which we will denote by L).
b) What describes the point Q(t) = (1 − t2)−→u1 + (2 − 3t2)−→u2 + (2t2 − 1)−→u3 if t takes all the real
values?
c) Find a vector parallel to L.
d) For what values of t is the point P (t) on the plane 2x+ 3y + 2z + 1 = 0?
e) Find the Cartesian equation of the plane parallel to the previous one and containing the point
Q(3).
f) Find the Cartesian equation of the plane perpendicular to L that contains the point Q(2).

© 2022 AoPS Incorporated 2
Art of Problem Solving is an ACS WASC Accredited School.


