AoPS Community

German National Olympiad 2012

www.artofproblemsolving.com/community/c3219486
by sqrtX, VicKmath7, Davsch, Lukas8r20

- Day 1

1 Define a sequence $\left(a_{n}\right)$ by $a_{0}=-4, a_{1}=-7$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for $n \geq 0$. Prove that there are infinitely many positive integers n such that a_{n} is composite.

2 Find the maximal number of edges a connected graph G with n vertices may have, so that after deleting an arbitrary cycle, G is not connected anymore.
$3 \quad$ Let $A B C$ a triangle and k a circle such that:
(1) The circle k passes through A and B and touches the line $A C$.
(2) The tangent to k at B intersects the line $A C$ in a point $X \neq C$.
(3) The circumcircle ω of $B X C$ intersects k in a point $Q \neq B$.
(4) The tangent to ω at X intersects the line $A B$ in a point Y.

Prove that the line $X Y$ is tangent to the circumcircle of $B Q Y$.

- Day 2

4 Let a, b be positive real numbers and $n \geq 2$ a positive integer. Prove that if $x^{n} \leq a x+b$ holds for a positive real number x, then it also satisfies the inequality $x<\sqrt[n-1]{2 a}+\sqrt[n]{2 b}$.

5 Let a, b be the lengths of two nonadjacent edges of a tetrahedron with inradius r. Prove that

$$
r<\frac{a b}{2(a+b)} .
$$

6 Let a_{1} and a_{2} be postive real numbers. Let $a_{n+2}=1+\frac{a_{n+1}}{a_{n}}$
Prove that $\left|a_{2012}-2\right|<10^{-200}$

