

AoPS Community

2012 German National Olympiad

German National Olympiad 2012

www.artofproblemsolving.com/community/c3219486 by sqrtX, VicKmath7, Davsch, Lukas8r20

-	Day 1
1	Define a sequence (a_n) by $a_0 = -4$, $a_1 = -7$ and $a_{n+2} = 5a_{n+1} - 6a_n$ for $n \ge 0$. Prove that there are infinitely many positive integers n such that a_n is composite.
2	Find the maximal number of edges a connected graph G with n vertices may have, so that after deleting an arbitrary cycle, G is not connected anymore.
3	Let ABC a triangle and k a circle such that: (1) The circle k passes through A and B and touches the line AC . (2) The tangent to k at B intersects the line AC in a point $X \neq C$. (3) The circumcircle ω of BXC intersects k in a point $Q \neq B$. (4) The tangent to ω at X intersects the line AB in a point Y . Prove that the line XY is tangent to the circumcircle of BQY .
_	Day 2
4	Let a, b be positive real numbers and $n \ge 2$ a positive integer. Prove that if $x^n \le ax + b$ holds for a positive real number x , then it also satisfies the inequality $x < \sqrt[n-1]{2a} + \sqrt[n]{2b}$.
5	Let a,b be the lengths of two nonadjacent edges of a tetrahedron with inradius $r.$ Prove that $r < \frac{ab}{2(a+b)}.$
6	Let a_1 and a_2 be postive real numbers. Let $a_{n+2} = 1 + \frac{a_{n+1}}{a_n}$ Prove that $ a_{2012} - 2 < 10^{-200}$

AOPSOnline AOPSAcademy AOPS