AoPS Community

German National Olympiad 2011

www.artofproblemsolving.com/community/c3219780
by sqrtX, Kezer, roza2010

- \quad Day 1

1 Prove for each non-negative integer n and real number x the inequality

$$
\sin x \cdot(n \sin x-\sin n x) \geq 0
$$

2 The price for sending a packet (a rectangular cuboid) is directly proportional to the sum of its length, width, and height. Is it possible to reduce the cost of sending a packet by putting it into a cheaper packet?

3 Let $A B C$ be an acute triangle and D the foot of the altitude from A onto $B C$. A semicircle with diameter $B C$ intersects segments $A B, A C$ and $A D$ in the points F, E resp. X. The circumcircles of the triangles $D E X$ and $D X F$ intersect $B C$ in L resp. N other than D. Prove $B N=L C$.

- \quad Day 2
$4 \quad$ There are two points A and B in the plane.
a) Determine the set M of all points C in the plane for which $|A C|^{2}+|B C|^{2}=2 \cdot|A B|^{2}$.
b) Decide whether there is a point $C \in M$ such that $\angle A C B$ is maximal and if so, determine this angle.

5 Prove or disprove:
$\exists n \in N$, s.t. $324+455^{n}$ is prime.
$6 \quad$ Let $p>2$ be a prime. Define a sequence $\left(Q_{n}(x)\right)$ of polynomials such that $Q_{0}(x)=1, Q_{1}(x)=x$ and $Q_{n+1}(x)=x Q_{n}(x)+n Q_{n-1}(x)$ for $n \geq 1$. Prove that $Q_{p}(x)-x^{p}$ is divisible by p for all integers x.

