

AoPS Community

2011 German National Olympiad

German National Olympiad 2011

www.artofproblemsolving.com/community/c3219780 by sqrtX, Kezer, roza2010

-	Day 1
1	Prove for each non-negative integer n and real number x the inequality
	$\sin x \cdot (n \sin x - \sin nx) \ge 0$
2	The price for sending a packet (a rectangular cuboid) is directly proportional to the sum of its length, width, and height. Is it possible to reduce the cost of sending a packet by putting it into a cheaper packet?
3	Let ABC be an acute triangle and D the foot of the altitude from A onto BC . A semicircle with diameter BC intersects segments AB , AC and AD in the points F , E resp. X . The circumcircles of the triangles DEX and DXF intersect BC in L resp. N other than D . Prove $BN = LC$.
-	Day 2
4	There are two points A and B in the plane. a) Determine the set M of all points C in the plane for which $ AC ^2 + BC ^2 = 2 \cdot AB ^2$. b) Decide whether there is a point $C \in M$ such that $\angle ACB$ is maximal and if so, determine this angle.
5	Prove or disprove:
	$\exists n \in N$, s.t. $324 + 455^n$ is prime.
6	Let $p > 2$ be a prime. Define a sequence $(Q_n(x))$ of polynomials such that $Q_0(x) = 1$, $Q_1(x) = x$ and $Q_{n+1}(x) = xQ_n(x) + nQ_{n-1}(x)$ for $n \ge 1$. Prove that $Q_p(x) - x^p$ is divisible by p for all integers x .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

1