AoPS Community

German National Olympiad 2007

www.artofproblemsolving.com/community/c3221966
by sqrtX, petros r

- Day 1

1 Determine all real numbers x such that for all positive integers n the inequality $(1+x)^{n} \leq$ $1+\left(2^{n}-1\right) x$ is true.

2 Let A be the set of odd integers $\leq 2 n-1$. For a positive integer m, let $B=\{a+m \mid a \in A\}$. Determine for which positive integers n there exists a positive integer m such that the product of all elements in A and B is a square.

3 We say that two triangles are oriented similarly if they are similar and have the same orientation. Prove that if $A L T, A R M, O R T$, and $U L M$ are four triangles which are oriented similarly, then A is the midpoint of the line segment $O U$.

- Day 2

4 Find all triangles such that its angles form an arithmetic sequence and the corresponding sides form a geometric sequence.

5 Determine all finite sets M of real numbers such that M contains at least 2 numbers and any two elements of M belong to an arithmetic progression of elements of M with three terms.

6 For two real numbers a, b the equation: $x^{4}-a x^{3}+6 x^{2}-b x+1=0$ has four solutions (not necessarily distinct). Prove that $a^{2}+b^{2} \geq 32$

