

AoPS Community

2007 German National Olympiad

German National Olympiad 2007

www.artofproblemsolving.com/community/c3221966 by sqrtX, petros r

-	Day 1
1	Determine all real numbers x such that for all positive integers n the inequality $(1 + x)^n \le 1 + (2^n - 1)x$ is true.
2	Let A be the set of odd integers $\leq 2n - 1$. For a positive integer m, let $B = \{a + m a \in A\}$. Determine for which positive integers n there exists a positive integer m such that the product of all elements in A and B is a square.
3	We say that two triangles are oriented similarly if they are similar and have the same orientation. Prove that if ALT , ARM , ORT , and ULM are four triangles which are oriented similarly, then A is the midpoint of the line segment OU .
-	Day 2
4	Find all triangles such that its angles form an arithmetic sequence and the corresponding sides form a geometric sequence.
5	Determine all finite sets M of real numbers such that M contains at least 2 numbers and any two elements of M belong to an arithmetic progression of elements of M with three terms.
6	For two real numbers a,b the equation: $x^4 - ax^3 + 6x^2 - bx + 1 = 0$ has four solutions (not necessarily distinct). Prove that $a^2 + b^2 \ge 32$

AoPS Online AoPS Academy AoPS & Ao