

AoPS Community

2006 German National Olympiad

German National Olympiad 2006

www.artofproblemsolving.com/community/c3224046 by sqrtX, peeta, Ankoganit, bearkiller, Kezer, tarzanjunior

-	Day 1
1	Find all $n \in \mathbb{Z}^+$, so that
	$z_n = \underbrace{101\dots101}_{2n+1 \text{ digits}}$
	2n+1 digits
	is prime.
2	Five points are on the surface of of a sphere of radius 1. Let a_{\min} denote the smallest distance (measured along a straight line in space) between any two of these points. What is the maximum value for a_{\min} , taken over all arrangements of the five points?
3	For which positive integer n can you color the numbers 1,22n with n colors, such that every color is used twice and the numbers 1,2,3n occur as difference of two numbers of the same color exatly once.
-	Day 2
4	Let <i>D</i> be a point inside a triangle <i>ABC</i> such that $ AC - AD \ge 1$ and $ BC - BD \ge 1$. Prove that for any point <i>E</i> on the segment <i>AB</i> , we have $ EC - ED \ge 1$.
5	Let $x \neq 0$ be a real number satisfying $ax^2 + bx + c = 0$ with $a, b, c \in \mathbb{Z}$ obeying $ a + b + c > 1$. Then prove $ x \geq \frac{1}{ a + b + c - 1}$.
6	Let a circle through B and C of a triangle ABC intersect AB and AC in Y and Z , respectively.
	Let <i>P</i> be the intersection of <i>BZ</i> and <i>CY</i> , and let <i>X</i> be the intersection of <i>AP</i> and <i>BC</i> . Let <i>M</i> be the point that is distinct from <i>X</i> and on the intersection of the circumcircle of the triangle XYZ with <i>BC</i> .

Prove that M is the midpoint of BC

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱