AoPS Community

German National Olympiad 2006

www.artofproblemsolving.com/community/c3224046
by sqrtX, peeta, Ankoganit, bearkiller, Kezer, tarzanjunior

- \quad Day 1
$1 \quad$ Find all $n \in \mathbb{Z}^{+}$, so that

$$
z_{n}=\underbrace{101 \ldots 101}_{2 n+1 \text { digits }}
$$

is prime.
2 Five points are on the surface of of a sphere of radius 1 . Let $a_{\text {min }}$ denote the smallest distance (measured along a straight line in space) between any two of these points. What is the maximum value for $a_{\text {min }}$, taken over all arrangements of the five points?

3 For which positive integer n can you color the numbers $1,2 \ldots 2 n$ with n colors, such that every color is used twice and the numbers $1,2,3 \ldots$ occur as difference of two numbers of the same color exatly once.

- \quad Day 2
$4 \quad$ Let D be a point inside a triangle $A B C$ such that $|A C|-|A D| \geq 1$ and $|B C|-|B D| \geq 1$. Prove that for any point E on the segment $A B$, we have $|E C|-|E D| \geq 1$.
$5 \quad$ Let $x \neq 0$ be a real number satisfying $a x^{2}+b x+c=0$ with $a, b, c \in \mathbb{Z}$ obeying $|a|+|b|+|c|>1$. Then prove

$$
|x| \geq \frac{1}{|a|+|b|+|c|-1} .
$$

6 Let a circle through B and C of a triangle $A B C$ intersect $A B$ and $A C$ in Y and Z, respectively. Let P be the intersection of $B Z$ and $C Y$, and let X be the intersection of $A P$ and $B C$. Let M be the point that is distinct from X and on the intersection of the circumcircle of the triangle $X Y Z$ with $B C$.
Prove that M is the midpoint of $B C$

