AoPS Community

European Mathematical Cup 2022

www.artofproblemsolving.com/community/c3232109
by Tintarn, Assassino9931

- Junior

1 Determine all positive integers n for which there exist positive divisors a, b, c of n such that $a>b>c$ and $a^{2}-b^{2}, b^{2}-c^{2}, a^{2}-c^{2}$ are also divisors of n.

2 Find all pairs (x, y) of positive real numbers such that $x y$ is an integer and $x+y=\left\lfloor x^{2}-y^{2}\right\rfloor$.
3 Let $A B C$ be an acute-angled triangle with $A C>B C$, with incircle τ centered at I which touches $B C$ and $A C$ at points D and E, respectively. The point M on τ is such that $B M \| D E$ and M and B lie on the same halfplane with respect to the angle bisector of $\angle A C B$. Let F and H be the intersections of τ with $B M$ and $C M$ different from M, respectively. Let J be a point on the line $A C$ such that $J M \| E H$. Let K be the intersection of $J F$ and τ different from F. Prove that $M E \| K H$.
$4 \quad$ A collection F of distinct (not necessarily non-empty) subsets of $X=\{1,2, \ldots, 300\}$ is lovely if for any three (not necessarily distinct) sets A, B and C in F at most three out of the following eight sets are non-empty

$$
\begin{array}{lll}
A \cap B \cap C, & \bar{A} \cap B \cap C, & A \cap \bar{B} \cap C, \\
\bar{A} \cap \bar{B} \cap C, & \bar{A} \cap B \cap \bar{C}, \bar{C}, & A \cap \bar{B} \cap \bar{C}, \\
\bar{A} \cap \bar{B} \cap \bar{C}
\end{array}
$$

where \bar{S} denotes the set of all elements of X which are not in S.
What is the greatest possible number of sets in a lovely collection?

- Senior

1 Let $n \geq 3$ be a positive integer. Alice and Bob are playing a game in which they take turns colouring the vertices of a regular n-gon. Alice plays the first move. Initially, no vertex is coloured. Both players start the game with 0 points.

In their turn, a player colours a vertex V which has not been coloured and gains k points where k is the number of already coloured neighbouring vertices of V. (Thus, k is either 0,1 or 2 .)

The game ends when all vertices have been coloured and the player with more points wins; if they have the same number of points, no one wins. Determine all $n \geq 3$ for which Alice has a winning strategy and all $n \geq 3$ for which Bob has a winning strategy.

2 We say that a positive integer n is lovely if there exist a positive integer k and (not necessarily distinct) positive integers $d_{1}, d_{2}, \ldots, d_{k}$ such that $n=d_{1} d_{2} \cdots d_{k}$ and $d_{i}^{2} \mid n+d_{i}$ for $i=1,2, \ldots, k$.
a) Are there infinitely many lovely numbers?
b) Is there a lovely number, greater than 1 , which is a perfect square of an integer?

3 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{3}\right)+f(y)^{3}+f(z)^{3}=3 x y z
$$

for all real numbers x, y and z with $x+y+z=0$.
4 Five points A, B, C, D and E lie on a circle τ clockwise in that order such that $A B \| C E$ and $\angle A B C>90^{\circ}$. Let k be a circle tangent to $A D, C E$ and τ such that k and τ touch on the arc $\widehat{D E}$ not containing A, B and C. Let $F \neq A$ be the intersection of τ and the tangent line to k passing through A different from $A D$.
Prove that there exists a circle tangent to $B D, B F, C E$ and τ.

