

AoPS Community

2022 European Mathematical Cup

European Mathematical Cup 2022

www.artofproblemsolving.com/community/c3232109 by Tintarn, Assassino9931

-	Junior

- **1** Determine all positive integers *n* for which there exist positive divisors *a*, *b*, *c* of *n* such that a > b > c and $a^2 b^2$, $b^2 c^2$, $a^2 c^2$ are also divisors of *n*.
- **2** Find all pairs (x, y) of positive real numbers such that xy is an integer and $x + y = \lfloor x^2 y^2 \rfloor$.
- **3** Let ABC be an acute-angled triangle with AC > BC, with incircle τ centered at I which touches BC and AC at points D and E, respectively. The point M on τ is such that $BM \parallel DE$ and M and B lie on the same halfplane with respect to the angle bisector of $\angle ACB$. Let F and H be the intersections of τ with BM and CM different from M, respectively. Let J be a point on the line AC such that $JM \parallel EH$. Let K be the intersection of JF and τ different from F. Prove that $ME \parallel KH$.
- **4** A collection F of distinct (not necessarily non-empty) subsets of $X = \{1, 2, ..., 300\}$ is *lovely* if for any three (not necessarily distinct) sets A, B and C in F at most three out of the following eight sets are non-empty

 $\begin{array}{lll} A \cap B \cap C, & \overline{A} \cap B \cap C, & A \cap \overline{B} \cap C, & A \cap B \cap \overline{C}, \\ \overline{A} \cap \overline{B} \cap C, & \overline{A} \cap B \cap \overline{C}, & A \cap \overline{B} \cap \overline{C}, & \overline{A} \cap \overline{B} \cap \overline{C} \end{array}$

where \overline{S} denotes the set of all elements of X which are not in S.

What is the greatest possible number of sets in a lovely collection?

-	Senior
1	Let $n \ge 3$ be a positive integer. Alice and Bob are playing a game in which they take turns colouring the vertices of a regular <i>n</i> -gon. Alice plays the first move. Initially, no vertex is coloured. Both players start the game with 0 points.
	In their turn, a player colours a vertex V which has not been coloured and gains k points where k is the number of already coloured neighbouring vertices of V . (Thus, k is either 0, 1 or 2.)
	The game ends when all vertices have been coloured and the player with more points wins; if

The game ends when all vertices have been coloured and the player with more points wins; if they have the same number of points, no one wins. Determine all $n \ge 3$ for which Alice has a winning strategy and all $n \ge 3$ for which Bob has a winning strategy.

AoPS Community

2022 European Mathematical Cup

2 We say that a positive integer n is lovely if there exist a positive integer k and (not necessarily distinct) positive integers d_1, d_2, \ldots, d_k such that $n = d_1 d_2 \cdots d_k$ and $d_i^2 \mid n + d_i$ for $i = 1, 2, \ldots, k$.

a) Are there infinitely many lovely numbers?

b) Is there a lovely number, greater than 1, which is a perfect square of an integer?

3 Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^3) + f(y)^3 + f(z)^3 = 3xyz$$

for all real numbers x, y and z with x + y + z = 0.

4 Five points *A*, *B*, *C*, *D* and *E* lie on a circle τ clockwise in that order such that *AB* \parallel *CE* and $\angle ABC > 90^{\circ}$. Let *k* be a circle tangent to *AD*, *CE* and τ such that *k* and τ touch on the arc \widehat{DE} not containing *A*, *B* and *C*. Let $F \neq A$ be the intersection of τ and the tangent line to *k* passing through *A* different from *AD*.

Prove that there exists a circle tangent to *BD*, *BF*, *CE* and τ .

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.