AoPS Community

German National Olympiad 2002

www.artofproblemsolving.com/community/c3232673
by sqrtX, WolfusA, vickyricky

- Day 1

1 Find all real numbers a, b satisfying the following system of equations

$$
\begin{aligned}
2 a^{2}-2 a b+b^{2} & =a \\
4 a^{2}-5 a b+2 b^{2} & =b .
\end{aligned}
$$

2 Minimal distance of a finite set of different points in space is length of the shortest segment, whose both ends belong to this set and segment has length greater than 0 .
a) Prove there exist set of 8 points on sphere with radius R, whose minimal distance is greater than $1,15 R$.
b) Does there exist set of 8 points on sphere with radius R, whose minimal distance is greater than $1,2 R$?

3 Prove that for all primes p true is equality

$$
\sum_{k=1}^{p-1}\left\lfloor\frac{k^{3}}{p}\right\rfloor=\frac{(p-2)(p-1)(p+1)}{4}
$$

- Day 2

4 Given a positive real number a_{1}, we recursively define $a_{n+1}=1+a_{1} a_{2} \cdots a_{n}$. Furthermore, let

$$
b_{n}=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}} .
$$

Prove that $b_{n}<\frac{2}{a_{1}}$ for all positive integers n and that this is the smallest possible bound.
5 Show that the triangle whose angles satisfy the equality

$$
\frac{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C}{\cos ^{2} A+\cos ^{2} B+\cos ^{2} C}=2
$$

is right angled

6 Theo Travel, who has 5 children, has already visited 8 countries of the eurozone. From every country, he brought 5 not necessarily distinct coins home. Moreover, among these 40 coins there are exactly 5 of every value ($1,2,5,10,20$, and $50 \mathrm{ct}, 1$ and 2 euro). He wants to give each child 8 coins such that they are from different countries and that each child gets the same amount of money. Is this always possible?

