AoPS Community

www.artofproblemsolving.com/community/c3234264
by MathLover_ZJ, CHN_Lucas
$1 a, b, c, d$ are real numbers so that $a \geq b, c \geq d$,

$$
|a|+2|b|+3|c|+4|d|=1 .
$$

Let $P=(a-b)(b-c)(c-d)$, find the maximum and minimum value of P.
2 In acute triangle $\triangle A B C, H$ is the orthocenter, $B D, C E$ are altitudes. M is the midpoint of $B C$. P, Q are on segment $B M, D E$, respectively. R is on segment $P Q$ such that $\frac{B P}{E Q}=\frac{C P}{D Q}=\frac{P R}{Q R}$. Suppose L is the orthocenter of $\triangle A H R$, then prove: $Q M$ passes through the midpoint of $R L$.

3 Does there exist an infinite set S consisted of positive integers,so that for any $x, y, z, w \in S, x<$ $y, z<w$, if $(x, y) \neq(z, w)$,then $\operatorname{gcd}(x y+2022, z w+2022)=1$?

4 Given $r \in \mathbb{R}$. Alice and Bob plays the following game:
An equation with blank is written on the blackboard as below:

$$
S=|\square-\square|+|\square-\square|+|\square-\square|
$$

Every round, Alice choose a real number from $[0,1]$ (not necessary to be different from the numbers chosen before) and Bob fill it in an empty box. After 6 rounds, every blank is filled and S is determined at the same time. If $S \geq r$ then Alice wins, otherwise Bob wins.
Find all r such that Alice can guarantee her victory.

