AoPS Community

www.artofproblemsolving.com/community/c3234277
by CHN Lucas
$1 a_{1}, a_{2}, \ldots, a_{9}$ are nonnegative reals with sum 1 . Define S and T as below:

$$
\begin{aligned}
S & =\min \left\{a_{1}, a_{2}\right\}+2 \min \left\{a_{2}, a_{3}\right\}+\ldots+9 \min \left\{a_{9}, a_{1}\right\} \\
T & =\max \left\{a_{1}, a_{2}\right\}+2 \max \left\{a_{2}, a_{3}\right\}+\ldots+9 \max \left\{a_{9}, a_{1}\right\}
\end{aligned}
$$

When S reaches its maximum, find all possible values of T.
$2 A, B, C, D, E$ are points on a circle ω, satisfying $A B=B D, B C=C E . A C$ meets $B E$ at $P . Q$ is on $D E$ such that $B E / / A Q$. Suppose $\odot(A P Q)$ intersects ω again at T. A^{\prime} is the reflection of A wrt $B C$. Prove that $A^{\prime} B P T$ lies on the same circle.
$3 S=\{1,2, \ldots, N\} . A_{1}, A_{2}, A_{3}, A_{4} \subseteq S$, each having cardinality $500 . \forall x, y \in S, \exists i \in\{1,2,3,4\}$, $x, y \in A_{i}$. Determine the maximal value of N.
$4 \quad k>2$ is an integer. a_{0}, a_{1}, \ldots is an integer sequence such that $a_{0}=0, a_{n+1}=k a_{n}-a_{n-1}$. Prove that for any positive integer $m,(2 m)!\mid a_{1} a_{2} \ldots a_{3 m}$.

