AoPS Community

Flanders Math Olympiad 2012

www.artofproblemsolving.com/community/c3235728
by parmenides51

1 Our class decides to have a alpha - beta - gamma tournament. This party game is always played in groups of three. Any possible combination of three players (three students or two students and the teacher) plays the game 1 time. The player who wins gets 1 point. The two losers get no points. At the end of the tournament, miraculously, all students have as many points. The teacher has 3 points. How many students are there in our class?

2 Let n be a natural number. Call a the smallest natural number you need to subtract from n to get a perfect square. Call b the smallest natural number that you must add to n to get a perfect square. Prove that $n-a b$ is a perfect square.

3 (a) Show that for any angle θ and for any natural number m :

$$
|\sin m \theta| \leq m|\sin \theta|
$$

(b) Show that for all angles θ_{1} and θ_{2} and for all even natural numbers m :

$$
\left|\sin m \theta_{2}-\sin m \theta_{1}\right| \leq m\left|\sin \left(\theta_{2}-\theta_{1}\right)\right|
$$

(c) Show that for every odd natural number m there are two angles, resp. θ_{1} and θ_{2}, exist for which the inequality in (b) is not valid.

4 In $\triangle A B C, \angle A=66^{\circ}$ and $|A B|<|A C|$. The outer bisector in A intersects $B C$ in D and $|B D|=$ $|A B|+|A C|$. Determine the angles of $\triangle A B C$.

