AoPS Community

Dutch Mathematical Olympiad 1984

www.artofproblemsolving.com/community/c3236156
by parmenides51

1 The circles C_{1} and C_{2} with radii r_{1} and r_{2} touch the line p at the point $P . C_{1}$ lies entirely within C_{2}. Line $q \perp p$ intersects p at S and touches C_{1} at R. q intersects C_{2} at M and N, where N is between R and S.
a) Prove that line $P R$ bisects angle $\angle M P N$.
b) Calculate the ratio $r_{1}: r_{2}$ if line $P N$ bisects angle $\angle R P S$.

2 The circuit diagram drawn (see figure) contains a battery B, a lamp L and five switches S_{1} to S_{5}. The probability that switch S_{3} is closed (makes contact) is $\frac{2}{3}$, for the other four switches that probability is $\frac{1}{2}$ (the probabilities are mutually independent). Calculate the probability that the light is on.

3 For $n=1,2,3, \ldots . a_{n}$ is defined by:

$$
a_{n}=\frac{1 \cdot 4 \cdot 7 \cdot \ldots(3 n-2)}{2 \cdot 5 \cdot 8 \cdot \ldots(3 n-1)}
$$

Prove that for every n holds that

$$
\frac{1}{\sqrt{3 n+1}} \leq a_{n} \leq \frac{1}{\sqrt[3]{3 n+1}}
$$

4 By placing parentheses in the expression 1:2:3 we can get two different number values: (1: 2) : $3=\frac{1}{6}$ and $1:(2: 3)=\frac{3}{2}$. Now brackets are placed in the expression $1: 2: 3: 4: 5: 6: 7: 8$.

Multiple bracket pairs are allowed, whether or not in nest form.
(a) What is the largest numerical value we can get, and what is the smallest?
(b) How many different number values can be obtained?

