

AoPS Community

Dutch Mathematical Olympiad 1984

www.artofproblemsolving.com/community/c3236156 by parmenides51

1 The circles C_1 and C_2 with radii r_1 and r_2 touch the line p at the point P. C_1 lies entirely within C_2 . Line $q \perp p$ intersects p at S and touches C_1 at R. q intersects C_2 at M and N, where N is between R and S.

a) Prove that line PR bisects angle $\angle MPN$.

b) Calculate the ratio $r_1 : r_2$ if line *PN* bisects angle $\angle RPS$.

2 The circuit diagram drawn (see figure) contains a battery B, a lamp L and five switches S_1 to S_5 . The probability that switch S_3 is closed (makes contact) is $\frac{2}{3}$, for the other four switches that probability is $\frac{1}{2}$ (the probabilities are mutually independent). Calculate the probability that the light is on.

3 For $n = 1, 2, 3, ..., a_n$ is defined by:

$$a_n = \frac{1 \cdot 4 \cdot 7 \cdot \dots (3n-2)}{2 \cdot 5 \cdot 8 \cdot \dots (3n-1)}$$

Prove that for every n holds that

$$\frac{1}{\sqrt{3n+1}} \le a_n \le \frac{1}{\sqrt[3]{3n+1}}$$

4 By placing parentheses in the expression 1:2:3 we can get two different number values: $(1:2):3 = \frac{1}{6}$ and $1:(2:3) = \frac{3}{2}$. Now brackets are placed in the expression 1:2:3:4:5:6:7:8.

AoPS Community

1984 Dutch Mathematical Olympiad

Multiple bracket pairs are allowed, whether or not in nest form.

- (a) What is the largest numerical value we can get, and what is the smallest?
- (b) How many different number values can be obtained?

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.