

AoPS Community

Dutch Mathematical Olympiad 1986

www.artofproblemsolving.com/community/c3236157 by parmenides51

1 $f(x) = \frac{12x+9}{19x+86}, \ x \neq -\frac{86}{19}$

Prove that $\exists ! x_o \in R \ \forall h_1, h_2 \in R[f(x_0 + h_1)f(x_0 - h_1) = f(x_0 + h_2)f(x_0 - h_2)]$, and calculate x_0 .

2 Prove that for all positive integers *n* holds that

$$\frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{(2n-1)\cdot 2n} = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}$$

3 The following apply: $a, b, c, d \ge 0$ and abcd = 1Prove that $a^2 + b^2 + c^2 + d^2 + ab + ac + ad + bc + bd + cd \ge 10$

4 The lines *a* and *b* are parallel and the point *A* lies on *a*. One chooses one circle γ through A tangent to *b* at *B*. *a* intersects γ for the second time at *T*. The tangent line at *T* of γ is called *t*. Prove that independently of the choice of γ , there is a fixed point *P* such that *BT* passes through *P*.

Prove that independently of the choice of γ , there is a fixed circle δ such that t is tangent to δ .

Act of Problem Solving is an ACS WASC Accredited School.