AoPS Community

Dutch Mathematical Olympiad 1988

www.artofproblemsolving.com/community/c3236159
by parmenides51

1 The real numbers $x_{1}, x_{2}, \ldots, x_{n}$ and $a_{0}, a_{1}, \ldots, a_{n-1}$ with $x_{i} \neq 0$ for $i \in\{1,2, . ., n\}$ are such that

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Express $x_{1}^{-2}+x_{2}^{-2}+\ldots+x_{n}^{-2}$ in terms of $a_{0}, a_{1}, \ldots, a_{n-1}$.
2 Given is a number a with $0 \leq \alpha \leq \pi$. A sequence $c_{0}, c_{1}, c_{2}, \ldots$ is defined as

$$
\begin{gathered}
c_{0}=\cos \alpha \\
C_{n+1}=\sqrt{\frac{1+c_{n}}{2}} \text { for } n=0,1,2, \ldots
\end{gathered}
$$

Calculate $\lim _{n \rightarrow \infty} 2^{2 n+1}\left(1-c_{n}\right)$
3 For certain a, b, c holds: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
Prove that for all odd n holds,

$$
\frac{1}{a^{n}}+\frac{1}{b^{n}}+\frac{1}{c^{n}}=\frac{1}{a^{n}+b^{n}+c^{n}}
$$

4 Given is an isosceles triangle $A B C$ with $A B=2$ and $A C=B C=3$. We consider squares where A, B and C lie on the sides of the square (so not on the extension of such a side). Determine the maximum and minimum value of the area of such a square. Justify the answer.

