AoPS Community

Dutch Mathematical Olympiad 1989

www.artofproblemsolving.com/community/c3236160
by parmenides51

1 For a sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ with $0<a_{1}<a_{2}<a_{3}<\ldots$ applies:

$$
a_{n}=4 a_{n-1}-a_{n-2} \text { for } n>2
$$

It is further given that $a_{4}=194$. Calculate a_{5}.
2 Given is a square $A B C D$ with $E \in B C$, arbitrarily. On $C D$ lies the point F is such that $\angle E A F=$ 45°. Prove that $E F$ is tangent to the circle with center A and radius $A B$.

3 Calculate

$$
\sum_{n=1}^{1989} \frac{1}{\sqrt{n+\sqrt{n^{2}-1}}}
$$

4 Given is a regular n-sided pyramid with top T and base $A_{1} A_{2} A_{3} \ldots A_{n}$. The line perpendicular to the ground plane through a point B of the ground plane within $A_{1} A_{2} A_{3} \ldots A_{n}$ intersects the plane $T A_{1} A_{2}$ at C_{1}, the plane $T A_{2} A_{3}$ at C_{2}, and so on, and finally the plane $T A_{n} A_{1}$ at C_{n}. Prove that $B C_{1}+B C_{2}+\ldots+B C_{n}$ is independent of choice of B 's.
$5 \quad \forall k \in N \exists n(k) \in N, a(k): 0<a(k)<1\left[(1+\sqrt{2})^{2 k+1}=n(k)+a(k)\right]$
Prove: $(n(k)+a(k)) a(k)=1$, for all $k \in N$, and calculate $\lim _{k \rightarrow \infty} a(k)$

