

## **AoPS Community**

## **Dutch Mathematical Olympiad 1989**

www.artofproblemsolving.com/community/c3236160 by parmenides51

**1** For a sequence of integers  $a_1, a_2, a_3, \dots$  with  $0 < a_1 < a_2 < a_3 < \dots$  applies:

$$a_n = 4a_{n-1} - a_{n-2}$$
 for  $n > 2$ 

It is further given that  $a_4 = 194$ . Calculate  $a_5$ .

**2** Given is a square ABCD with  $E \in BC$ , arbitrarily. On CD lies the point F is such that  $\angle EAF = 45^{\circ}$ . Prove that EF is tangent to the circle with center A and radius AB.

3 Calculate

$$\sum_{n=1}^{1989} \frac{1}{\sqrt{n+\sqrt{n^2-1}}}$$

- **4** Given is a regular *n*-sided pyramid with top *T* and base  $A_1A_2A_3...A_n$ . The line perpendicular to the ground plane through a point *B* of the ground plane within  $A_1A_2A_3...A_n$  intersects the plane  $TA_1A_2$  at  $C_1$ , the plane  $TA_2A_3$  at  $C_2$ , and so on, and finally the plane  $TA_nA_1$  at  $C_n$ . Prove that  $BC_1 + BC_2 + ... + BC_n$  is independent of choice of *B*'s.
- **5**  $\forall k \in N \; \exists n(k) \in N, a(k) : 0 < a(k) < 1[(1 + \sqrt{2})^{2k+1} = n(k) + a(k)]$ **Prove:** (n(k) + a(k))a(k) = 1, for all  $k \in N$ , and calculate  $\lim_{k \to \infty} a(k)$

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱