AoPS Community

German National Olympiad 2003

www.artofproblemsolving.com/community/c3236484
by sqrtX, parmenides51, Lukas8r20

- \quad Day 1

1 Solve the system of equations:

$$
\left\{\begin{array}{l}
x^{3}+y^{3}=7 \\
x y(x+y)=-2
\end{array}\right.
$$

2 There are four circles k_{1}, k_{2}, k_{3} and k_{4} of equal radius inside the triangle $A B C$. The circle k_{1} touches the sides $A B, C A$ and the circle k_{4}, k_{2} touches the sides $A B, B C$ and k_{4}, and k_{3} touches the sides $A C, B C$ and k_{4}. Prove that the center of k_{4} lies on the line connecting the incenter and circumcenter of $A B C$.

3 Consider a $N \times N$ square board where $N \geq 3$ is an odd integer. The caterpillar Carl sits at the center of the square; all other cells contain distinct positive integers. An integer n weights $1 / n$ kilograms. Carl wants to leave the board but can eat at most 2 kilograms. Determine whether Carl can always find a way out when
a) $N=2003$.
b) N is an arbitrary odd integer.

- Day 2

4 From the midpoints of the sides of an acute-angled triangle, perpendiculars are drawn to the adjacent sides. The resulting six straight lines bound the hexagon. Prove that its area is half the area of the original triangle.
$5 \quad n$ is a positive integer. Let $a(n)$ be the smallest number for which $n \mid a(n)$!
Find all solutions of:

$$
\frac{a(n)}{n}=\frac{2}{3}
$$

6 Prove that there are infinitely many coprime, positive integers a, b such that a divides $b^{2}-5$ and b divides $a^{2}-5$.

