

AoPS Community

© 2022 AoPS Incorporated

1

German National Olympiad 2004

www.artofproblemsolving.com/community/c3236485 by sqrtX, indybar

-	Day 1
1	Find all real numbers x, y satisfying the following system of equations
	$x^4 + y^4 = 17(x+y)^2$ xy = 2(x+y).
2	Let k be a circle with center M . There is another circle k_1 whose center M_1 lies on k , and we denote the line through M and M_1 by g . Let T be a point on k_1 and inside k . The tangent t to k_1 at T intersects k in two points A and B . Denote the tangents (different from t) to k_1 passing through A and B by a and b , respectively. Prove that the lines a, b , and g are either concurrent or parallel.
3	Prove that for every positive integer n there is an n -digit number z with none of its digits 0 and such that z is divisible by its sum of digits.
_	Day 2
4	For a positive integer n , let a_n be the integer closest to \sqrt{n} . Compute $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_{2004}}.$
5	Prove that for four positive real numbers a, b, c, d the following inequality holds and find all equality cases: $a^3 + b^3 + c^3 + d^3 \ge a^2b + b^2c + c^2d + d^2a.$

6 Is there a circle which passes through five points with integer co-ordinates?

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.