AoPS Community

German National Olympiad 2004

www.artofproblemsolving.com/community/c3236485
by sqrtX, indybar

- Day 1

1 Find all real numbers x, y satisfying the following system of equations

$$
\begin{aligned}
x^{4}+y^{4} & =17(x+y)^{2} \\
x y & =2(x+y) .
\end{aligned}
$$

2 Let k be a circle with center M. There is another circle k_{1} whose center M_{1} lies on k, and we denote the line through M and M_{1} by g. Let T be a point on k_{1} and inside k. The tangent t to k_{1} at T intersects k in two points A and B. Denote the tangents (diifferent from t) to k_{1} passing through A and B by a and b, respectively. Prove that the lines a, b, and g are either concurrent or parallel.

3 Prove that for every positive integer n there is an n-digit number z with none of its digits 0 and such that z is divisible by its sum of digits.

- \quad Day 2

4 For a positive integer n, let a_{n} be the integer closest to \sqrt{n}. Compute

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{2004}}
$$

5 Prove that for four positive real numbers a, b, c, d the following inequality holds and find all equality cases:

$$
a^{3}+b^{3}+c^{3}+d^{3} \geq a^{2} b+b^{2} c+c^{2} d+d^{2} a .
$$

6 Is there a circle which passes through five points with integer co-ordinates?

