## AoPS Community

## Final Round - Switzerland 2007

www.artofproblemsolving.com/community/c3236714
by parmenides51

- Day 1

1 Determine all positive real solutions of the following system of equations:

$$
\begin{array}{lll}
a=\max \left\{\frac{1}{b}, \frac{1}{c}\right\} & b=\max \left\{\frac{1}{c}, \frac{1}{d}\right\} & c=\max \left\{\frac{1}{d}, \frac{1}{e}\right\} \\
d=\max \left\{\frac{1}{e}, \frac{1}{f}\right\} & e=\max \left\{\frac{1}{f}, \frac{1}{a}\right\} & f=\max \left\{\frac{1}{a}, \frac{1}{b}\right\}
\end{array}
$$

2 Let $a, b, c$ be three integers such that $a+b+c$ is divisible by 13 . Prove that

$$
a^{2007}+b^{2007}+c^{2007}+2 \cdot 2007 a b c
$$

is divisible by 13 .
3 The plane is divided into unit squares. Each box should be be colored in one of $n$ colors, so that if four squares can be covered with an $L$-tetromino, then these squares have four different colors (the $L$-Tetromino may be rotated and be mirrored). Find the smallest value of $n$ for which this is possible.

4 Let $A B C$ be an acute-angled triangle with $A B>A C$ and orthocenter $H$. Let $D$ the projection of $A$ on $B C$. Let $E$ be the reflection of $C$ wrt $D$. The lines $A E$ and $B H$ intersect at point $S$. Let $N$ be the midpoint of $A E$ and let $M$ be the midpoint of $B H$. Prove that $M N$ is perpendicular to $D S$.

5 Determine all functions $f: R_{\geq 0} \rightarrow R_{\geq 0}$ with the following properties:
(a) $f(1)=0$,
(b) $f(x)>0$ for all $x>1$,
(c) For all $x, y \geq 0$ with $x+y>0$ holds

$$
f(x f(y)) f(y)=f\left(\frac{x y}{x+y}\right)
$$

- $\quad$ Day 2
$6 \quad$ Three equal circles $k_{1}, k_{2}, k_{3}$ intersect non-tangentially at a point $P$. Let $A$ and $B$ be the centers of circles $k_{1}$ and $k_{2}$. Let $D$ and $C$ be the intersection of $k_{3}$ with $k_{1}$ and $k_{2}$ respectively, which is different from $P$. Show that $A B C D$ is a parallelogram.

7 Let $a, b, c$ be nonnegative real numbers with arithmetic mean $m=\frac{a+b+c}{3}$. Provethat

$$
\sqrt{a+\sqrt{b+\sqrt{c}}}+\sqrt{b+\sqrt{c+\sqrt{a}}}+\sqrt{c+\sqrt{a+\sqrt{b}}} \leq 3 \sqrt{m+\sqrt{m+\sqrt{m}}}
$$

8 Let $M \subset\{1,2,3, \ldots, 2007\}$ a set with the following property: Among every three numbers one can always choose two from $M$ such that one is divisible by the other. How many numbers can $M$ contain at most?

9 Find all pairs $(a, b)$ of natural numbers such that

$$
\frac{a^{3}+1}{2 a b^{2}+1}
$$

is an integer.
10 The plane is divided into equilateral triangles of side length 1. Consider a equilateral triangle of side length $n$ whose sides lie on the grid lines. On every grid point on the edge and inside of this triangle lies a stone. In a move, a unit triangle is selected, which has exactly 2 corners with is covered with a stone. The two stones are removed, and the third corner is turned a new stone was laid. For which $n$ is it possible that after finitely many moves only one stone left?

