

AoPS Community

2008 Switzerland - Final Round

Final Round - Switzerland 2008

www.artofproblemsolving.com/community/c3236715 by parmenides51, bora_olmez

– Day 1

- 1 Let ABC be a triangle with $\angle BAC \neq 45^{\circ}$ and $\angle ABC \neq 135^{\circ}$. Let P be the point on the line AB with $\angle CPB = 45^{\circ}$. Let O_1 and O_2 be the centers of the circumcircles of the triangles ACP and BCP respectively. Show that the area of the square CO_1PO_2 is equal to the area of the triangle ABC.
- **2** Determine all functions $f : R^+ \to R^+$, so that for all x, y > 0:

$$f(xy) \le \frac{xf(y) + yf(x)}{2}$$

3 Show that each number is of the form

$$2^{5^{2^{5^{\cdots}}}} + 4^{5^{4^{5^{\cdots}}}}$$

is divisible by 2008, where the exponential towers can be any independent ones have height ≥ 3 .

- **4** Consider three sides of an $n \times n \times n$ cube that meet at one of the corners of the cube. For which n is it possible to use this completely and without overlapping to cover strips of paper of size 3×1 ? The paper strips can also do this glued over the edges between these cube faces.
- 5 Let ABCD be a square with side length 1. Find the locus of all points P with the property $AP \cdot CP + BP \cdot DP = 1$.
- Day 2

6 Determine all odd natural numbers of the form

$$\frac{p+q}{p-q},$$

where p > q are prime numbers.

7 An 8×11 rectangle of unit squares somehow becomes disassembled into 21 contiguous parts. Prove that at least two of these parts, except for rotations and reflections have the same shape.

AoPS Community

2008 Switzerland - Final Round

8 Let *ABCDEF* be a convex hexagon inscribed in a circle. Prove that the diagonals *AD*, *BE* and *CF* intersect at one point if and only if

$$\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1$$

- **9** There are 7 lines in the plane. A point is called a *good* point if it is contained on at least three of these seven lines. What is the maximum number of *good* points?
- **10** Find all pairs(a, b) of positive real numbers with the following properties: (i) For all positive real numbers x, y, z, w holds $x + y^2 + z^3 + w^6 \ge a(xyzw)^b$. (ii) There is a quadruple (x, y, z, w) of positive real numbers such that in equality (i) applies.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.