

AoPS Community

2023 China National Olympiad

www.artofproblemsolving.com/community/c3238312 by CHN_Lucas, JG666, CANBANKAN, David-Vieta

– Day 1 (December 29th)

1 Define the sequences $(a_n), (b_n)$ by

$$a_n, b_n > 0, \forall n \in \mathbb{N}_+$$

$$a_{n+1} = a_n - \frac{1}{1 + \sum_{i=1}^n \frac{1}{a_i}}$$

$$b_{n+1} = b_n + \frac{1}{1 + \sum_{i=1}^n \frac{1}{b_i}}$$

1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1 - b_1$; 2) If $a_{100} = b_{99}$, determine which is larger between $a_{100} + b_{100}$ and $a_{101} + b_{101}$.

- **2** Let $\triangle ABC$ be an equilateral triangle of side length 1. Let D, E, F be points on BC, AC, AB respectively, such that $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}$. Let X, Y, Z be on lines BC, CA, AB respectively, such that $XY \perp DE, YZ \perp EF, ZX \perp FD$. Find all possible values of $\frac{1}{|DEF|} + \frac{1}{|XYZ|}$.
- **3** Given positive integer m, n, color the points of the regular (2m + 2n)-gon in black and white, 2m in black and 2n in white.

The coloring distance d(B, C) of two black points B, C is defined as the smaller number of white points in the two paths linking the two black points.

The coloring distance d(W, X) of two white points W, X is defined as the smaller number of black points in the two paths linking the two white points.

We define the matching of black points \mathcal{B} : label the 2m black points with $A_1, \dots, A_m, B_1, \dots, B_m$ satisfying no $A_i B_i$ intersects inside the gon.

We define the matching of white points W: label the 2n white points with $C_1, \dots, C_n, D_1, \dots, D_n$ satisfying no $C_i D_i$ intersects inside the gon.

We define $P(\mathcal{B}) = \sum_{i=1}^{m} d(A_i, B_i), P(\mathcal{W}) = \sum_{j=1}^{n} d(C_j, D_j).$ Prove that: $\max_{\mathcal{B}} P(\mathcal{B}) = \max_{\mathcal{W}} P(\mathcal{W})$

- Day 2 (December 30th)
- **4** Find the minimum positive integer $n \ge 3$, such that there exist n points A_1, A_2, \dots, A_n satisfying no three points are collinear and for any $1 \le i \le n$, there exist $1 \le j \le n (j \ne i)$, segment $A_j A_{j+1}$ pass through the midpoint of segment $A_i A_{i+1}$, where $A_{n+1} = A_1$

AoPS Community

2023 China National Olympiad

5 Prove that there exist C > 0, which satisfies the following conclusion: For any infinite positive arithmetic integer sequence a_1, a_2, a_3, \cdots , if the greatest common divisor of a_1 and a_2 is squarefree, then there exists a positive integer $m \le C \cdot a_2^2$, such that a_m is squarefree. Note: A positive integer N is squarefree if it is not divisible by any square number greater than 1.

Proposed by Qu Zhenhua

6 There are $n(n \ge 8)$ airports, some of which have one-way direct routes between them. For any two airports a and b, there is at most one one-way direct route from a to b (there may be both one-way direct routes from a to b and from b to a). For any set A composed of airports $(1 \le |A| \le n - 1)$, there are at least $4 \cdot \min\{|A|, n - |A|\}$ one-way direct routes from the airport in A to the airport not in A.

Prove that: For any airport x, we can start from x and return to the airport by no more than $\sqrt{2n}$ one-way direct routes.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.