AoPS Community

2023 China National Olympiad

www.artofproblemsolving.com/community/c3238312
by CHN_Lucas, JG666, CANBANKAN, David-Vieta

- Day 1 (December 29th)

1 Define the sequences $\left(a_{n}\right),\left(b_{n}\right)$ by

$$
\begin{aligned}
& a_{n}, b_{n}>0, \forall n \in \mathbb{N}_{+} \\
& a_{n+1}=a_{n}-\frac{1}{1+\sum_{i=1}^{n} \frac{1}{a_{i}}} \\
& b_{n+1}=b_{n}+\frac{1}{1+\sum_{i=1}^{n} \frac{1}{b_{i}}}
\end{aligned}
$$

1) If $a_{100} b_{100}=a_{101} b_{101}$, find the value of $a_{1}-b_{1}$;
2) If $a_{100}=b_{99}$, determine which is larger between $a_{100}+b_{100}$ and $a_{101}+b_{101}$.

2 Let $\triangle A B C$ be an equilateral triangle of side length 1. Let D, E, F be points on $B C, A C, A B$ respectively, such that $\frac{D E}{20}=\frac{E F}{22}=\frac{F D}{38}$. Let X, Y, Z be on lines $B C, C A, A B$ respectively, such that $X Y \perp D E, Y Z \perp E F, Z X \perp F D$. Find all possible values of $\frac{1}{[D E F]}+\frac{1}{[X Y Z]}$.

3 Given positive integer m, n, color the points of the regular $(2 m+2 n)$-gon in black and white, $2 m$ in black and $2 n$ in white.
The coloring distance $d(B, C)$ of two black points B, C is defined as the smaller number of white points in the two paths linking the two black points.
The coloring distance $d(W, X)$ of two white points W, X is defined as the smaller number of black points in the two paths linking the two white points.
We define the matching of black points \mathcal{B} : label the $2 m$ black points with $A_{1}, \cdots, A_{m}, B_{1}, \cdots, B_{m}$ satisfying no $A_{i} B_{i}$ intersects inside the gon.
We define the matching of white points \mathcal{W} : label the $2 n$ white points with $C_{1}, \cdots, C_{n}, D_{1}, \cdots, D_{n}$ satisfying no $C_{i} D_{i}$ intersects inside the gon.
We define $P(\mathcal{B})=\sum_{i=1}^{m} d\left(A_{i}, B_{i}\right), P(\mathcal{W})=\sum_{j=1}^{n} d\left(C_{j}, D_{j}\right)$.
Prove that: $\max _{\mathcal{B}} P(\mathcal{B})=\max _{\mathcal{W}} P(\mathcal{W})$

- \quad Day 2 (December 30th)

4 Find the minimum positive integer $n \geq 3$, such that there exist n points $A_{1}, A_{2}, \cdots, A_{n}$ satisfying no three points are collinear and for any $1 \leq i \leq n$, there exist $1 \leq j \leq n(j \neq i)$, segment $A_{j} A_{j+1}$ pass through the midpoint of segment $A_{i} A_{i+1}$, where $A_{n+1}=A_{1}$

5 Prove that there exist $C>0$, which satisfies the following conclusion:
For any infinite positive arithmetic integer sequence $a_{1}, a_{2}, a_{3}, \cdots$, if the greatest common divisor of a_{1} and a_{2} is squarefree, then there exists a positive integer $m \leq C \cdot a_{2}{ }^{2}$, such that a_{m} is squarefree.
Note: A positive integer N is squarefree if it is not divisible by any square number greater than 1.

Proposed by Qu Zhenhua
6 There are $n(n \geq 8)$ airports, some of which have one-way direct routes between them. For any two airports a and b, there is at most one one-way direct route from a to b (there may be both one-way direct routes from a to b and from b to a). For any set A composed of airports $(1 \leq|A| \leq n-1)$, there are at least $4 \cdot \min \{|A|, n-|A|\}$ one-way direct routes from the airport in A to the airport not in A.
Prove that: For any airport x, we can start from x and return to the airport by no more than $\sqrt{2 n}$ one-way direct routes.

