AoPS Community

USA Team Selection Test for EGMO 2023

www.artofproblemsolving.com/community/c3242723
by v_Enhance, popcorn1, cosmicgenius, naman12, Taco12, pi271828

Day 1 Thursday, December 8, 2022
1 There are 2022 equally spaced points on a circular track γ of circumference 2022. The points are labeled $A_{1}, A_{2}, \ldots, A_{2022}$ in some order, each label used once. Initially, Bunbun the Bunny begins at A_{1}. She hops along γ from A_{1} to A_{2}, then from A_{2} to A_{3}, until she reaches A_{2022}, after which she hops back to A_{1}. When hopping from P to Q, she always hops along the shorter of the two arcs $\widehat{P Q}$ of γ; if $\overline{P Q}$ is a diameter of γ, she moves along either semicircle.

Determine the maximal possible sum of the lengths of the 2022 arcs which Bunbun traveled, over all possible labellings of the 2022 points.

Kevin Cong
2 Consider pairs of functions (f, g) from the set of nonnegative integers to itself such that
$-f(0)+f(1)+f(2)+\cdots+f(42) \leq 2022$;

- for any integers $a \geq b \geq 0$, we have $g(a+b) \leq f(a)+f(b)$.

Determine the maximum possible value of $g(0)+g(1)+g(2)+\cdots+g(84)$ over all such pairs of functions.

Evan Chen (adapting from TST3, by Sean Li)
3 Let $A B C$ be an acute triangle. Let M be the midpoint of side $B C$, and let E and F be the feet of the altitudes from B and C, respectively. Suppose that the common external tangents to the circumcircles of triangles $B M E$ and $C M F$ intersect at a point K, and that K lies on the circumcircle of $A B C$. Prove that line $A K$ is perpendicular to line $B C$.

Kevin Cong
Day 2 Thursday, January 12, 2023
4 Let $A B C$ be a triangle with $A B+A C=3 B C$. The B-excircle touches side $A C$ and line $B C$ at E and D, respectively. The C-excircle touches side $A B$ at F. Let lines $C F$ and $D E$ meet at P. Prove that $\angle P B C=90^{\circ}$.

Ray Li
5 Let $\lfloor\bullet\rfloor$ denote the floor function. For nonnegative integers a and b, their bitwise xor, denoted
$a \oplus b$, is the unique nonnegative integer such that

$$
\left\lfloor\frac{a}{2^{k}}\right\rfloor+\left\lfloor\frac{b}{2^{k}}\right\rfloor-\left\lfloor\frac{a \oplus b}{2^{k}}\right\rfloor
$$

is even for every $k \geq 0$. Find all positive integers a such that for any integers $x>y \geq 0$, we have

$$
x \oplus a x \neq y \oplus a y
$$

Carl Schildkraut

$6 \quad$ Let m and n be fixed positive integers. Tsvety and Freyja play a game on an infinite grid of unit square cells. Tsvety has secretly written a real number inside of each cell so that the sum of the numbers within every rectangle of size either m by n or n by m is zero. Freyja wants to learn all of these numbers.

One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals what number is written in it. Freyja wins if, at any point, Freyja can simultaneously deduce the number written in every cell of the entire infinite grid (If this never occurs, Freyja has lost the game and Tsvety wins).

In terms of m and n, find the smallest number of questions that Freyja must ask to win, or show that no finite number of questions suffice.

Nikolai Beluhov

