

AoPS Community

2010 Argentina National Olympiad

Argentina National Olympiad 2010

www.artofproblemsolving.com/community/c3260422 by parmenides51

-	Level 3
-	Day 1
1	Given several integers, the allowed operation is to replace two of them by their non-negative difference. The operation is repeated until only one number remains. If the initial numbers are $1, 2, \ldots, 2010$, what can be the last remaining number?
2	Let ABC be a triangle with $\angle C = 90^{\circ}$ and $AC = 1$. The median AM intersects the incircle at the points P and Q , with P between A and Q , such that $AP = QM$. Find the length of PQ .
3	The positive integers a, b, c are less than 99 and satisfy $a^2 + b^2 = c^2 + 99^2$. Find the minimum and maximum value of $a + b + c$.
-	Day 2
4	Find the sum of all products $a_1a_2a_{50}$, where $a_1, a_2,, a_{50}$ are distinct positive integers, less than or equal to 101 , and such that no two of them add up to 101 .
5	21 numbers are written in a row. u, v, w are three consecutive numbers so $v = \frac{2uw}{u+w}$. The first number is $\frac{1}{100}$, the last one is $\frac{1}{101}$. Find the 15th number.
6	In a row the numbers $1, 2,, 2010$ have been written. Two players, taking turns, write $+$ or \times between two consecutive numbers whenever possible. The first player wins if the algebraic sum obtained is divisible by 3; otherwise, the second player wins. Find a winning strategy for one of the players.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.