AoPS Community

Argentina National Olympiad 2010

www.artofproblemsolving.com/community/c3260422
by parmenides51

- Level 3

- \quad Day 1

1 Given several integers, the allowed operation is to replace two of them by their non-negative difference. The operation is repeated until only one number remains. If the initial numbers are $1,2, \ldots, 2010$, what can be the last remaining number?

2 Let $A B C$ be a triangle with $\angle C=90^{\circ}$ and $A C=1$. The median $A M$ intersects the incircle at the points P and Q, with P between A and Q, such that $A P=Q M$. Find the length of $P Q$.

3 The positive integers a, b, c are less than 99 and satisfy $a^{2}+b^{2}=c^{2}+99^{2}$. . Find the minimum and maximum value of $a+b+c$.

- Day 2

4 Find the sum of all products $a_{1} a_{2} \ldots a_{50}$, where $a_{1}, a_{2}, \ldots, a_{50}$ are distinct positive integers, less than or equal to 101 , and such that no two of them add up to 101 .
$5 \quad 21$ numbers are written in a row. u, v, w are three consecutive numbers so $v=\frac{2 u w}{u+w}$. The first number is $\frac{1}{100}$, the last one is $\frac{1}{101}$. Find the 15 th number.

6 In a row the numbers $1,2, \ldots, 2010$ have been written. Two players, taking turns, write + or \times between two consecutive numbers whenever possible. The first player wins if the algebraic sum obtained is divisible by 3 ; otherwise, the second player wins. Find a winning strategy for one of the players.

