AoPS Community

2007 I Open Regional Geometry Anischenko

(Russian) Open Regional Olympiad in Geometry named after V.I. prof. S.A. Anishchenko for students in grades 8-11 (8-10 in 2007)

www.artofproblemsolving.com/community/c3268916
by parmenides 51

VIII I - one and only round

p1. Three points are given in the plane of the drawing, which are the centers of the excircles of the triangle $A B C$. Construct triangle $A B C$. (A circle is called excircle if it touches one of the sides of the triangle and the extensions of the other two of its sides). It is enough to offer a reasonable plan for constructing a triangle.
p2. Given a circle with center at a point O and a point P lying inside the circle. Segment $A B$ is given. Construct a chord of a circle passing through the point P and equal to the segment $A B$. Find out how many solutions the problem can have depending on the length of the segment $A B$ and the position of the point P.
p3. In a pentagon $A B C D E$, diagonals $A C$ and $E C$ bisect angles $\angle A$ and $\angle E$, respectively. Find the area of the pentagon $A B C D$ if $\angle B=55^{\circ}, \angle D=125^{\circ}$ and the area of triangle $A C E$ is 10 .
p4. In an isosceles triangle $A B C(A B=B C), \angle A=75^{\circ}$. The bisector of angle $\angle A$ intersects side $B C$ at point K. Find the distance from point K to the base $A C$ if $B K=10$.
p5. $C D$ is the angle bisector of triangle $A B C$, where $\angle C=90^{\circ}$. Prove that $C D=\frac{A C \cdot B C \sqrt{2}}{A C+B C}$.
PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here (https://artofproblemsolving.com/community/c3188020_).

IX I- one and only round
p1. The area of a right triangle is equal to S. From the midpoint of the median drawn to the hypotenuse of this triangle, perpendiculars are drawn to its sides. Find the area of a triangle whose vertices are the feet of the perpendiculars.
p2. In the rhombus $A B C D$ with diagonals $A C=d_{1}$ and $B D=d_{2}$, heights $C E$ and $C K$ are drawn from the vertex C of an obtuse angle. Find the area of quadrilateral $A E C K$.
p3. The hypotenuse of a right triangle is the side of the square outside the triangle. Find the distance between the vertex of the right angle of the triangle and the center of the square if the sum of the legs of the triangle is d.
p4. In an isosceles triangle $A B C(A B=B C)$, altitude $B D$ is drawn. From the point D, the perpendicular $D E$ is drawn on the side $A B$. Prove that the line passing through the point B and the midpoint of the segment $D E$ is perpendicular to the line $E C$.
p5. A convex quadrilateral $A B C D$ is given. The diagonals divide it into 4 triangles, the areas of which are equal to S_{1}, S_{2}, S_{3} and S_{4} in the order of going around its vertices. Prove that $S_{1} \cdot S_{3}=S_{2} \cdot S_{4}$.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here (https://artofproblemsolving.com/community/c3188020_).

X I- one and only round
p1. Given a circle and point A on it. Find the locus of orthocenters of triangles $A B C$ inscribed in this circle if $\angle A=60^{\circ}$.
p2. Given a rectangle $A B C D$ and a point P. The lines passing through the points A and B and perpendicular to the lines $P C$ and $P D$, respectively, intersect at the point K. Prove that the line $P K$ is perpendicular to $A B$.
p3. In an isosceles triangle $A B C, A C=C B, \angle A C B=100^{\circ}$. The point M inside the triangle is chosen so that $\angle M A B=30^{\circ}, \angle M B A=20^{\circ}$. Find the value of the angle $\angle M C A$.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here (https://artofproblemsolving.com/community/c3188020_).

X 4 The edge of a regular tetrahedron is equal to a. Find the largest value of the area of the projection of this tetrahedron onto a plane.

$$
\frac{a^{2}}{2}
$$

X 5 A sphere inscribed in the tetrahedron $A B C D$ touches the face $A B C$ at point M. Prove that the angle $\angle A M C$ is equal to half the sum of the angles of the three-dimensional quadrilateral $A B C D$.

