AoPS Community

2008 II Open Regional Geometry Anischenko

(Russian) Open Regional Olympiad in Geometry named after V.I. prof. S.A. Anishchenko for students in grades 8-11

www.artofproblemsolving.com/community/c3268941
by parmenides 51

VIII II - one and only round

p1. A point lying inside a parallelogram is connected to all its vertices. Prove that the sums of the areas of the opposite triangles into which the parallelogram is divided are equal.
p2. In an isosceles right-angled triangle $A B C$, the bisector of an acute angle B is drawn, which intersects the leg $A C$ at point L. Having the segments $C L$ and $L A$ as the sides, squares are constucted. Prove that the area of one square is twice the area of the other.
p3. A circle with center O of radius R intersects the sides of angle $\angle A O B$ at points A and B. A straight line passing through point A intersects circle (O, R) at point C, and the extewnsion of side $O B$ of the given angle at point D such that point O lies between B and D. Prove that if $C D=R$, then $\angle A O B=3 \angle A D B$.
p4. $A B C D$ is rhombus. Triangles $A D M$ and $D C K$ are regular. Points M and B lie on the same side of $A D$, points K and B lie on opposite sides of $C D$. Prove that B, M, K lie on the same line.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here (https://artofproblemsolving.com/community/c3188020_).

IX II - one and only round
p1. Two circles touch externally at point $A . B C$ is their common external tangent that intersects the line of centers at point K, points B and C are the touchpoints. The line ℓ is drawn through K and is perpendicular to $B C$. Lines $A B$ and $A C$ intersect ℓ at points P and E. Prove that $K P=K E$.
p2. In triangle $A B C, A C=10, B C=12, \angle C A B=2 \angle C B A$. Find the length of side $A B$.
p4. Point C is selected on segment $B A$. Three circles are constructed having segments $A C$, $B C, B A$ as diameters. $C T$ is perpendicular on $A B$. Circles of radii r_{1} and r_{2} are inscribed in the regions bounded by semicircles and the line segment $C T$. Prove that $r_{1}=r_{2}$.
PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here(https://artofproblemsolving.com/community/c3188020_).

IX 3 In the triangle $A B C, A B=A C, \angle B A C=80^{\circ}$. Point M is taken inside the triangle such that $\angle M B C=30^{\circ}, \angle M C B=10^{\circ}$. Find the value of the angle $\angle A M C$.

X II - one and only round
p1. In a right triangle $A B C$, the radius of the inscribed circle is $r, A H$ is the altitude drawn from the vertex of the right angle. Circles are inscribed in each of the resulting right triangles. Find the distance between their centers.
p2. Point E is selected on the bisector of angle $\angle A O B, E A$ and $E B$ are perpendicular on the sides of the angle. A point P is chosen arbitrarily on the segment $A B$. The line $M K$ is drawn through P, perpendicular on $P E$. Points M and K lie on the sides of the angle. Prove that P is the midpoint of $M K$.
p5. Two circles and a straight line are given. Construct a square so that two of its opposite vertices lie on the circles, and the other two lie on a straight line.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here(https://artofproblemsolving.com/community/c3188020_).

X 3 same as IX 3

X 4 All edges of the triangular prism $A B C A_{1} B_{1} C_{1}$ are equal to a and $\angle A A_{1} C_{1}=\angle A A_{1} B_{1}=60^{\circ}$. Find the total surface area of the prism.
$a\left(1+\frac{3 \sqrt{3}}{2}\right)$
XI 1 The base of the pyramid is a right triangle. The two side edges of the pyramid and the leg of the base enclosed between them are $10 \mathrm{~cm}, 17 \mathrm{~cm}, 21 \mathrm{~cm}$, respectively. The dihedral angles at the base of the pyramid are equal. Find the volume and area of its surface if the base of the height is the interior point of the base.
$V=140 \sqrt{7} \mathrm{~cm}^{3}, S=490 \mathrm{~cm}^{2}$
XI 2 The edge of the cube $A B C D A_{1} B_{1} C_{1} D_{1}$ is equal to a. Find the distance between $B D_{1}$ and $D C_{1}$. $\frac{a \sqrt{6}}{6}$

XI II - one and only round
p3. The altitude $B D$ is drawn in the triangle $A B C(A C=B C)$. A perpendicular is drawn from point D on side $A B$. Prove that the line passing through point B and the midpoint of segment $D E$ is perpendicular to line $E C$.
p4. $B H$ is the altitude of triangle $B A C$. Perpendiculars are drawn from the point H on the other two sides of the triangle and to the altitudes drawn from the vertices A and C. Prove that the four points, the feet of the perpendiculars from H lie on the same line.

PS. You should use hide for answers. Collected here (https://artofproblemsolving.com/ community/c3260315_) and here (https://artofproblemsolving.com/community/c3188020_).

