AoPS Community

NIMO Summer Contest 2016

www.artofproblemsolving.com/community/c330165
by MSTang, djmathman

1 What is the value of

$$
\left(9+\frac{9}{9}\right)^{9-9 / 9}-\frac{9}{9} ?
$$

Proposed by David Altizio

2 Compute the number of permutations (a, b, c, x, y, z) of $(1,2,3,4,5,6)$ which satisfy the five inequalities

$$
a<b<c, \quad x<y<z, \quad a<x, \quad b<y, \quad \text { and } \quad c<z .
$$

Proposed by Evan Chen

3 Consider all 1001-element subsets of the set $\{1,2,3, \ldots, 2015\}$. From each such subset choose the median. Find the arithmetic mean of all these medians.

Proposed by Michael Ren
4 Nine people sit in three rows of three chairs each. The probability that two of them, Celery and Drum, sit next to each other in the same row is $\frac{m}{n}$ for relatively prime positive integers m and n. Find $100 m+n$.
Proposed by Michael Tang
5 Compute the number of non-empty subsets S of $\{-3,-2,-1,0,1,2,3\}$ with the following property: for any $k \geq 1$ distinct elements $a_{1}, \ldots, a_{k} \in S$ we have $a_{1}+\cdots+a_{k} \neq 0$.
Proposed by Evan Chen
6 A positive integer n is lucky if $2 n+1,3 n+1$, and $4 n+1$ are all composite numbers. Compute the smallest lucky number.

Proposed by Michael Tang
7 Suppose that a and b are real numbers such that $\sin (a)+\sin (b)=1$ and $\cos (a)+\cos (b)=\frac{3}{2}$. If the value of $\cos (a-b)$ can be written as $\frac{m}{n}$ for relatively prime positive integers m and n, determine $100 m+n$.

Proposed by Michael Ren

8 Evan writes a computer program that randomly rearranges the digits $0,2,4,6$, and 8 to create a five-digit number with no leading zeroes. If he executes this program once, the probability the program outputs an integer divisible by 4 can be written in the form $\frac{m}{n}$ where m and n are positive integers which share no common factors. What is $100 m+n$?
Proposed by David Altizio
9 Compute the number of real numbers t such that

$$
t=50 \sin (t-\lfloor t\rfloor) .
$$

Here $\lfloor\cdot\rfloor$ denotes the greatest integer function.
Proposed by David Altizio
10 In rectangle $A B C D$, point M is the midpoint of $A B$ and P is a point on side $B C$. The perpendicular bisector of $M P$ intersects side $D A$ at point X. Given that $A B=33$ and $B C=56$, find the least possible value of $M X$.
Proposed by Michael Tang
11 A set S of positive integers is sum-complete if there are positive integers m and n such that an integer a is the sum of the elements of some nonempty subset of S if and only if $m \leq a \leq n$.

Let S be a sum-complete set such that $\{1,3\} \subset S$ and $|S|=8$. Find the greatest possible value of the sum of the elements of S.

Proposed by Michael Tang

12 Let p be a prime. It is given that there exists a unique nonconstant function $\chi:\{1,2, \ldots, p-$ $1\} \rightarrow\{-1,1\}$ such that $\chi(1)=1$ and $\chi(m n)=\chi(m) \chi(n)$ for all $m, n \not \equiv 0(\bmod p)$ (here the product $m n$ is taken $\bmod p$). For how many positive primes p less than 100 is it true that

$$
\sum_{a=1}^{p-1} a^{\chi(a)} \equiv 0 \quad(\bmod p) ?
$$

Here as usual a^{-1} denotes multiplicative inverse.
Proposed by David Altizio
13 The area of the region in the $x y$-plane satisfying the inequality

$$
\min _{1 \leq n \leq 10} \max \left(\frac{x^{2}+y^{2}}{4 n^{2}}, 2-\frac{x^{2}+y^{2}}{4 n^{2}-4 n+1}\right) \leq 1
$$

is $k \pi$, for some integer k. Find k.

Proposed by Michael Tang
14 Find the smallest positive integer n such that $n^{2}+4$ has at least four distinct prime factors.
Proposed by Michael Tang
15 Let $A B C$ be a triangle with $A B=17$ and $A C=23$. Let G be the centroid of $A B C$, and let B_{1} and C_{1} be on the circumcircle of $A B C$ with $B B_{1} \| A C$ and $C C_{1} \| A B$. Given that G lies on $B_{1} C_{1}$, the value of $B C^{2}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Determine $100 m+n$.
Proposed by Michael Ren

