Art of Problem Solving

AoPS Community

IberoAmerican 2016

www.artofproblemsolving.com/community/c339866
by gavrilos, Leicich, Gamamal, Math_CYCR

- \quad Day 1

1 Find all prime numbers p, q, r, k such that $p q+q r+r p=12 k+1$
2 Find all positive real numbers (x, y, z) such that:

$$
\begin{aligned}
& x=\frac{1}{y^{2}+y-1} \\
& y=\frac{1}{z^{2}+z-1} \\
& z=\frac{1}{x^{2}+x-1}
\end{aligned}
$$

3 Let $A B C$ be an acute triangle and Γ its circumcircle. The lines tangent to Γ through B and C meet at P. Let M be a point on the arc $A C$ that does not contain B such that $M \neq A$ and $M \neq C$, and K be the point where the lines $B C$ and $A M$ meet. Let R be the point symmetrical to P with respect to the line $A M$ and Q the point of intersection of lines $R A$ and $P M$. Let J be the midpoint of $B C$ and L be the intersection point of the line $P J$ and the line through A parallel to $P R$. Prove that L, J, A, Q, and K all lie on a circle.

- Day 2

4 Determine the maximum number of bishops that we can place in a 8×8 chessboard such that there are not two bishops in the same cell, and each bishop is threatened by at most one bishop.

Note: A bishop threatens another one, if both are placed in different cells, in the same diagonal. A board has as diagonals the 2 main diagonals and the ones parallel to those ones.

5 The circumferences C_{1} and C_{2} cut each other at different points A and K. The common tangent to C_{1} and C_{2} nearer to K touches C_{1} at B and C_{2} at C. Let P be the foot of the perpendicular from B to $A C$, and let Q be the foot of the perpendicular from C to $A B$. If E and F are the symmetric points of K with respect to the lines $P Q$ and $B C$, respectively, prove that A, E and F are collinear.
$6 \quad$ Let k be a positive integer and $a_{1}, a_{2}, \cdots, a_{k}$ digits. Prove that there exists a positive integer n such that the last $2 k$ digits of 2^{n} are, in the following order, $a_{1}, a_{2}, \cdots, a_{k}, b_{1}, b_{2}, \cdots, b_{k}$, for certain digits $b_{1}, b_{2}, \cdots, b_{k}$

