AoPS Community

www.artofproblemsolving.com/community/c345601
by randomusername

1 In fencing, you win a round if you are the first to reach 15 points. Suppose that when A plays against B, at any point during the round, A scores the next point with probability p and B scores the next point with probability $q=1-p$. (However, they never can both score a point at the same time.)

Suppose that in this round, A already has $14-k$ points, and B has $14-\ell$ (where $0 \leq k, \ell \leq 14$). By how much will the probability that A wins the round increase if A scores the next point?

2 Consider a triangle $A B C$ and a point D on its side $\overline{A B}$. Let I be a point inside $\triangle A B C$ on the angle bisector of $A C B$. The second intersections of lines $A I$ and $C I$ with circle $A C D$ are P and Q, respectively. Similarly, the second intersection of lines $B I$ and $C I$ with circle $B C D$ are R and S, respectively. Show that if $P \neq Q$ and $R \neq S$, then lines $A B, P Q$ and $R S$ pass through a point or are parallel.

3 Let $Q=\{0,1\}^{n}$, and let A be a subset of Q with 2^{n-1} elements. Prove that there are at least 2^{n-1} pairs $(a, b) \in A \times(Q \backslash A)$ for which sequences a and b differ in only one term.

