

AoPS Community

www.artofproblemsolving.com/community/c345604

by randomusername

- 1 Let $1 \le k \le n$ be integers. At most how many *k*-element subsets can we select from $\{1, 2, ..., n\}$ such that for any two selected subsets, one of the subsets consists of the *k* smallest elements of their union?
- **2** Prove that for any finite set *A* of positive integers, there exists a subset *B* of *A* satisfying the following conditions: -if $b_1, b_2 \in B$ are distinct, then neither b_1 and b_2 nor $b_1 + 1$ and $b_2 + 1$ are multiples of each other, and - for any $a \in A$, we can find a $b \in B$ such that *a* divides *b* or b + 1 divides a + 1.
- **3** If $p, q \in \mathbb{R}[x]$ satisfy $p(p(x)) = q(x)^2$, does it follow that $p(x) = r(x)^2$ for some $r \in \mathbb{R}[x]$?

