AoPS Community

Peru IMO TST 2007

www.artofproblemsolving.com/community/c3482
by carlosbr

- \quad Grade level 1

1 Let P be an interior point of the semicircle whose diameter is $A B$ ($\angle A P B$ is obtuse). The incircle of $\triangle A B P$ touches $A P$ and $B P$ at M and N respectively. The line $M N$ intersects the semicircle in X and Y. Prove that $\widehat{X Y}=\angle A P B$.

2 Let a, b, c be positive real numbers, such that: $a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
Prove that:

$$
a+b+c \geq \frac{3}{a+b+c}+\frac{2}{a b c} .
$$

3 Let N be a natural number which can be expressed in the form $a^{2}+b^{2}+c^{2}$, where a, b, c are integers divisible by 3.
Prove that N can be expressed in the form $x^{2}+y^{2}+z^{2}$, where x, y, z are integers and any of them are divisible by 3 .

4 Let be a board with 2007×2007 cells, we colour with black P cells such that:

- there are no 3 colored cells that form a L-trinomes in any of its 4 orientations

Find the minimum value of P, such that when you colour one cell more, this configuration can't keep the condition above.

- \quad Grade level 2

1 Let k be a positive number and P a Polynomio with integer coeficients.
Prove that exists a n positive integer such that: $P(1)+P(2)+\cdots+P(N)$ is divisible by k.
2 Let $A B C$ be a triangle such that $C A \neq C B$,
the points A_{1} and B_{1} are tangency points for the ex-circles relative to sides $C B$ and $C A$, respectively, and I the incircle.
The line $C I$ intersects the cincumcircle of the triangle $A B C$ in the point P.
The line that trough P that is perpendicular to $C P$, intersects the line $A B$ in Q.
Prove that the lines $Q I$ and $A_{1} B_{1}$ are parallels.
3 Let T a set with 2007 points on the plane, without any 3 collinear points.
Let P any point which belongs to T.

Prove that the number of triangles that contains the point P inside and its vertices are from T, is even.

4 Let a, b and c be sides of a triangle. Prove that: $\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3$

