

AoPS Community

Peru IMO TST 2007

www.artofproblemsolving.com/community/c3482 by carlosbr

- Grade level 1
- **1** Let *P* be an interior point of the semicircle whose diameter is *AB* ($\angle APB$ is obtuse). The incircle of $\triangle ABP$ touches *AP* and *BP* at *M* and *N* respectively. The line *MN* intersects the semicircle in *X* and *Y*. Prove that $\widehat{XY} = \angle APB$.

2 Let a, b, c be positive real numbers, such that: $a + b + c \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.

Prove that:

$$a+b+c \ge \frac{3}{a+b+c} + \frac{2}{abc}.$$

- **3** Let *N* be a natural number which can be expressed in the form $a^2 + b^2 + c^2$, where *a*, *b*, *c* are integers divisible by 3. Prove that *N* can be expressed in the form $x^2 + y^2 + z^2$, where *x*, *y*, *z* are integers and any of them are divisible by 3.
- Let be a board with 2007 × 2007 cells, we colour with black P cells such that:
 there are no 3 colored cells that form a L-trinomes in any of its 4 orientations

Find the minimum value of *P*, such that when you colour one cell more, this configuration can't keep the condition above.

- Grade level 2
- 1 Let k be a positive number and P a Polynomio with integer coefficients. Prove that exists a n positive integer such that: $P(1) + P(2) + \cdots + P(N)$ is divisible by k.
- 2 Let ABC be a triangle such that $CA \neq CB$, the points A_1 and B_1 are tangency points for the ex-circles relative to sides CB and CA, respectively, and I the incircle. The line CI intersects the cincumcircle of the triangle ABC in the point P. The line that trough P that is perpendicular to CP, intersects the line AB in Q. Prove that the lines QI and A_1B_1 are parallels.
- **3** Let *T* a set with 2007 points on the plane, without any 3 collinear points. Let *P* any point which belongs to *T*.

AoPS Community

2007 Peru IMO TST

Prove that the number of triangles that contains the point P inside and its vertices are from T, is even.

4	Let a, b and c be sides of a triangle. Prove that:	$\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}$ +	$-\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}$ +	$-\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \le 3$
•		$\sqrt{b}+\sqrt{c}-\sqrt{a}$ '	$\sqrt{c} + \sqrt{a} - \sqrt{b}$	$\sqrt{a} + \sqrt{b} - \sqrt{c} = 0$

Act of Problem Solving is an ACS WASC Accredited School.