Art of Problem Solving

## AoPS Community

National Math Olympiad (3rd Round) 1996
www.artofproblemsolving.com/community/c3484
by Amir Hossein, Amir.S, Inequalities Master, grobber

- First Exam

1 Let $a, b, c, d$ be positive real numbers. Prove that

$$
\frac{a}{b+2 c+3 d}+\frac{b}{c+2 d+3 a}+\frac{c}{d+2 a+3 b}+\frac{d}{a+2 b+3 c} \geq \frac{2}{3} .
$$

2 Let $A B C D$ be a parallelogram. Construct the equilateral triangle $D C E$ on the side $D C$ and outside of parallelogram. Let $P$ be an arbitrary point in plane of $A B C D$. Show that

$$
P A+P B+A D \geq P E .
$$

3 Find all sets of real numbers $\left\{a_{1}, a_{2}, \ldots, 1375\right\}$ such that

$$
2\left(\sqrt{a_{n}-(n-1)}\right) \geq a_{n+1}-(n-1), \quad \forall n \in\{1,2, \ldots, 1374\}
$$

and

$$
2\left(\sqrt{a_{1375}-1374}\right) \geq a_{1}+1
$$

4 Show that there doesn't exist two infinite and separate sets $A, B$ of points such that
(i) There are no three collinear points in $A \cup B$,
(ii) The distance between every two points in $A \cup B$ is at least 1 , and
(iii) There exists at least one point belonging to set $B$ in interior of each triangle which all of its vertices are chosen from the set $A$, and there exists at least one point belonging to set $A$ in interior of each triangle which all of its vertices are chosen from the set $B$.

## - $\quad$ Second Exam

1 Find all non-negative integer solutions of the equation

$$
2^{x}+3^{y}=z^{2} .
$$

## AoPS Community

## 1996 Iran MO (3rd Round)

2 Let $A B C D$ be a convex quadrilateral. Construct the points $P, Q, R$, and $S$ on continue of $A B, B C, C D$, and $D A$, respectively, such that

$$
B P=C Q=D R=A S
$$

Show that if $P Q R S$ is a square, then $A B C D$ is also a square.
3 Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ be $n$ real numbers such that $a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k} \geq 0$ for all positive integers $k$. Suppose that $p=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n}\right|\right\}$. Prove that $p=a_{1}$, and

$$
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) \leq x^{n}-a_{1}^{n} \quad \forall x>a_{1} .
$$

4 Let $n$ be a positive integer and suppose that $\phi(n)=\frac{n}{k}$, where $k$ is the greatest perfect square such that $k \mid n$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be $n$ positive integers such that $a_{i}=p_{1}^{a_{1} i} \cdot p_{2}^{a_{2} i} \cdots p_{n}^{a_{n} i}$, where $p_{i}$ are prime numbers and $a_{j i}$ are non-negative integers, $1 \leq i \leq n, 1 \leq j \leq n$. We know that $p_{i} \mid \phi\left(a_{i}\right)$, and if $p_{i} \mid \phi\left(a_{j}\right)$, then $p_{j} \mid \phi\left(a_{i}\right)$. Prove that there exist integers $k_{1}, k_{2}, \ldots, k_{m}$ with $1 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{m} \leq n$ such that

$$
\phi\left(a_{k_{1}} \cdot a_{k_{2}} \cdots a_{k_{m}}\right)=p_{1} \cdot p_{2} \cdots p_{n} .
$$

- $\quad$ Third Exam

1 Suppose that $S$ is a finite set of real numbers with the property that any two distinct elements of $S$ form an arithmetic progression with another element in $S$. Give an example of such a set with 5 elements and show that no such set exists with more than 5 elements.

2 Consider a semicircle of center $O$ and diameter $A B$. A line intersects $A B$ at $M$ and the semicircle at $C$ and $D$ s.t. $M C>M D$ and $M B<M A$. The circumcircles od the $A O C$ and $B O D$ intersect again at $K$. Prove that $M K \perp K O$.

3 Suppose that 10 points are given in the plane, such that among any five of them there are four lying on a circle. Find the minimum number of these points which must lie on a circle.

4 Determine all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}-\{1\}$ such that

$$
f(n+1)+f(n+3)=f(n+5) f(n+7)-1375, \quad \forall n \in \mathbb{N} .
$$

5 Let $O$ be the circumcenter and $H$ the orthocenter of an acute-angled triangle $A B C$ such that $B C>C A$. Let $F$ be the foot of the altitude $C H$ of triangle $A B C$. The perpendicular to the line $O F$ at the point $F$ intersects the line $A C$ at $P$. Prove that $\measuredangle F H P=\measuredangle B A C$.

6 Find all pairs $(p, q)$ of prime numbers such that

$$
m^{3 p q} \equiv m \quad(\bmod 3 p q) \quad \forall m \in \mathbb{Z}
$$

