

AoPS Community

2000 Iran MO (3rd Round)

National Math Olympiad (3rd Round) 2000

www.artofproblemsolving.com/community/c3487

by Amir.S, sam-n, grobber, BaBaK Ghalebi, Pascual2005, Omid Hatami

2nd round Day 1 1 Does there exist a natural number N which is a power of 2, such that one can permute its decimal digits to obtain a different power of 2? 2 Call two circles in three-dimensional space pairwise tangent at a point P if they both pass through P and lines tangent to each circle at P coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles. 3 In a deck of n > 1 cards, some digits from 1 to8are written on each card. A digit may occur more than once, but at most once on a certain card. On each card at least one digit is written, and no two cards are denoted by the same set of digits. Suppose that for every $k = 1, 2, \ldots, 7$ digits, the number of cards that contain at least one of them is even. Find n. Day 2 1 A sequence of natural numbers c_1, c_2, \ldots is called *perfect* if every natural number m with $1 \le m \le c_1 + \dots + c_n$ can be represented as $m = \frac{c_1}{a_1} + \frac{c_2}{a_2} + \dots + \frac{c_n}{a_n}$ Given *n*, find the maximum possible value of c_n in a perfect sequence $(\tilde{c_i})$. 2 Circles C_1 and C_2 with centers at O_1 and O_2 respectively meet at points A and B. The radii O_1B and O_2B meet C_1 and C_2 at F and E. The line through B parallel to EF intersects C_1 again at M and C_2 again at N. Prove that MN = AE + AF. 3 Two triangles ABC and A'B'C' are positioned in the space such that the length of every side of $\triangle ABC$ is not less than a, and the length of every side of $\triangle A'B'C'$ is not less than a'. Prove that one can select a vertex of $\triangle ABC$ and a vertex of $\triangle A'B'C'$ so that the distance between the two selected vertices is not less than $\sqrt{\frac{a^2+a'^2}{3}}$. 3rd round _ Day 1

AoPS Community

2000 Iran MO (3rd Round)

- 1 Two circles intersect at two points A and B. A line ℓ which passes through the point A meets the two circles again at the points C and D, respectively. Let M and N be the midpoints of the arcs BC and BD (which do not contain the point A) on the respective circles. Let K be the midpoint of the segment CD. Prove that $\angle MKN = 90^{\circ}$.
- **2** Let *A* and *B* be arbitrary finite sets and let $f : A \longrightarrow B$ and $g : B \longrightarrow A$ be functions such that *g* is not onto. Prove that there is a subset *S* of *A* such that $\frac{A}{S} = g(\frac{B}{f(S)})$.
- **3** Suppose $f : \mathbb{N} \longrightarrow \mathbb{N}$ is a function that satisfies f(1) = 1 and $f(n+1) = \{ \begin{array}{c} f(n) + 2 \\ f(n) + 1 \end{array}$ if n = f(f(n) n + 1), (a) Prove that f(f(n) - n + 1) is either n or n + 1. (b) Determine f.

Day 2

- 1 Let us denote $\prod = \{(x, y) | y > 0\}$. We call a *semicircle* in \prod with center on the x axis a *semi-line*. Two intersecting *semi-lines* determine four *semi-angles*. A bisector of a *semi-angle* is a *semi-line* that bisects the *semi-angle*. Prove that in every *semi-triangle* (determined by three *semi-lines*) the bisectors are concurrent.
- 2 Find all f:N \longrightarrow N that: a) $f(m) = 1 \iff m = 1$ b) $d = gcd(m, n)f(m \cdot n) = \frac{f(m) \cdot f(n)}{f(d)}$ c) $f^{2000}(m) = f(m)$
- **3** Let *n* points be given on a circle, and let nk + 1 chords between these points be drawn, where 2k+1 < n. Show that it is possible to select k+1 of the chords so that no two of them intersect.

Day 1

- 1 In a tennis tournament where *n* players A_1, A_2, \ldots, A_n take part, any two players play at most one match, and $k \leq \frac{n(n-1)}{2}$ 2 matches are played. The winner of a match gets 1 point while the loser gets 0. Prove that a sequence d_1, d_2, \ldots, d_n of nonnegative integers can be the sequence of scores of the players (d_i being the score of A_i) if and only if (*i*) $d_1 + d_2 + \cdots + d_n = k$, and (*ii*) for any $X \subset$ $\{A_1, \ldots, A_n\}$, the number of matches between the players in X is at most $\sum_{A_i \in X} d_j$
- 2 Isosceles triangles $A_3A_1O_2$ and $A_1A_2O_3$ are constructed on the sides of a triangle $A_1A_2A_3$ as the bases, outside the triangle. Let O_1 be a point

AoPS Community

2000 Iran MO (3rd Round)

outside $\Delta A_1 A_2 A_3$ such that $\angle O_1 A_3 A_2 = \frac{1}{2} \angle A_1 O_3 A_2$ and $\angle O_1 A_2 A_3 = \frac{1}{2} \angle A_1 O_2 A_3$. Prove that $A_1 O_1 \perp O_2 O_3$, and if T is the projection of O_1 onto $A_2 A_3$, then $\frac{A_1 O_1}{O_2 O_3} = 2 \frac{O_1 T}{A_2 A_3}$.

3 A circle Γ with radius R and center ω , and a line d are drawn on a plane, such that the distance of ω from d is greater than R. Two points M and N vary on d so that the circle with diameter MN is tangent to Γ . Prove that there is a point P in the plane from which all the segments MN are visible at a constant angle.

Day 2

- 1 Let *n* be a positive integer. Suppose *S* is a set of ordered *n* tuples of nonnegative integers such that, whenever $(a_1, \ldots, an) \in S$ and b_i are nonnegative integers with $b_i \leq a_i$, the *n* tuple (b_1, \ldots, b_n) is also in *S*. If h_m is the number of elements of *S* with the sum of components equal to*m*, prove that h_m is a polynomial in *m* for all sufficiently largem.
- 2 Suppose that a, b, c are real numbers such that for all positive numbers x_1, x_2, \ldots, x_n we have $(\frac{1}{n} \sum_{i=1}^n x_i)^a (\frac{1}{n} \sum_{i=1}^n x_i^2)^b (\frac{1}{n} \sum_{i=1}^n x_i^3)^c \ge 1$

Prove that vector (a, b, c) is a nonnegative linear combination of vectors (-2, 1, 0) and (-1, 2, -1).

3 Prove that for every natural number *n* there exists a polynomial p(x) with integer coefficients such that p(1), p(2), ..., p(n) are distinct powers of 2.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.