Art of Problem Solving

AoPS Community

National Math Olympiad (3rd Round) 2004

www.artofproblemsolving.com/community/c3491
by Omid Hatami, sam-n, behzad

1 We say $m \circ n$ for natural $m, n \Longleftrightarrow$
nth number of binary representation of m is 1 or mth number of binary representation of n is 1.
and we say $m \bullet n$ if and only if m, n doesn't have the relation \circ
We say $A \subset \mathbb{N}$ is golden $\Longleftrightarrow \forall U, V \subset A$ that are finite and arenot empty and $U \cap V=\emptyset$, There exist $z \in A$ that $\forall x \in U, y \in V$ we have $z \circ x, z \bullet y$
Suppose \mathbb{P} is set of prime numbers.Prove if $\mathbb{P}=P_{1} \cup \ldots \cup P_{k}$ and $P_{i} \cap P_{j}=\emptyset$ then one of P_{1}, \ldots, P_{k} is golden.
$2 A$ is a compact convex set in plane. Prove that there exists a point $O \in A$, such that for every line $X X^{\prime}$ passing through O, where X and X^{\prime} are boundary points of A, then

$$
\frac{1}{2} \leq \frac{O X}{O X^{\prime}} \leq 2
$$

3 Suppose $V=\mathbb{Z}_{2}^{n}$ and for a vector $x=\left(x_{1}, \ldots x_{n}\right)$ in V and permutation σ. We have $x_{\sigma}=$ $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$
Suppose $n=4 k+2,4 k+3$ and $f: V \rightarrow V$ is injective and if x and y differ in more than $n / 2$ places then $f(x)$ and $f(y)$ differ in more than $n / 2$ places.
Prove there exist permutaion σ and vector v that $f(x)=x_{\sigma}+v$
4 We have finite white and finite black points that for each 4 oints there is a line that white points and black points are at different sides of this line.Prove there is a line that all white points and black points are at different side of this line.

5 assume that k,n are two positive integer $k \leq n$ count the number of permutation $\{1, \ldots, n\}$ st for any $1 \leq i, j \leq k$ and any positive integer m we have $f^{m}(i) \neq j$ (f^{m} meas iterarte function,)

6 assume that we have a $n * n$ table we fill it with $1, \ldots, n$ such that each number exists exactly n times prove that there exist a row or column such that at least \sqrt{n} diffrent number are contained.

7 Suppose F is a polygon with lattice vertices and sides parralell to x -axis and y -axis. Suppose $S(F), P(F)$ are area and perimeter of F.
Find the smallest k that: $S(F) \leq k . P(F)^{2}$

AoPS Community

2004 Iran MO (3rd Round)

$8 \quad \mathbb{P}$ is a n-gon with sides l_{1}, \ldots, l_{n} and vertices on a circle. Prove that no n-gon with this sides has area more than \mathbb{P}

9 Let $A B C$ be a triangle, and O the center of its circumcircle.
Let a line through the point O intersect the lines $A B$ and $A C$ at the points M and N, respectively. Denote by S and R the midpoints of the segments $B N$ and $C M$, respectively.
Prove that $\measuredangle R O S=\measuredangle B A C$.
$10 \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is injective and surjective. Distance of X and Y is not less than distance of $f(X)$ and $f(Y)$. Prove for A in plane:

$$
S(A) \geq S(f(A))
$$

where $S(A)$ is area of A
11 assume that $A B C$ is acute traingle and $A A^{\prime}$ is median we extend it until it meets circumcircle at $\mathrm{A}^{\prime \prime}$. let $A P_{a}$ be a diameter of the circumcircle. the pependicular from A^{\prime} to $A P_{a}$ meets the tangent to circumcircle at A " in the point X_{a}; we define X_{b}, X_{c} similary . prove that X_{a}, X_{b}, X_{c} are one a line.
$12 \mathbb{N}_{10}$ is generalization of \mathbb{N} that every hypernumber in \mathbb{N}_{10} is something like: $\ldots a_{2} a_{1} a_{0}$ with $a_{i} \in$ 0, $1 . .9$
(Notice that $\overline{. .000} \in \mathbb{N}_{10}$)
Also we easily have,$+ *$ in \mathbb{N}_{10}.
first k number of $a * b=$ first k nubmer of (first k number of a * first k number of b)
first k number of $a+b=$ first k nubmer of (first k number of a + first k number of b)
Fore example $\overline{\ldots .999}+\overline{\ldots .0001}=\overline{. .000}$
Prove that every monic polynomial in $\mathbb{N}_{10}[x]$ with degree d has at most d^{2} roots.
13 Suppose f is a polynomial in $\mathbb{Z}[X]$ and m is integer .Consider the sequence a_{i} like this $a_{1}=m$ and $a_{i+1}=f\left(a_{i}\right)$ find all polynomials f and alll integers m that for each i :

$$
a_{i} \mid a_{i+1}
$$

14 We define $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=\sum_{k=1}^{n}(k, n)$.
a) Show that if $\operatorname{gcd}(m, n)=1$ then we have $f(m n)=f(m) \cdot f(n)$;
b) Show that $\sum_{d \mid n} f(d)=n d(n)$.

15 This problem is easy but nobody solved it.
point A moves in a line with speed v and B moves also with speed v^{\prime} that at every time the direction of move of B goes from A. We know $v \geq v^{\prime}$. If we know the point of beginning of path of A, then B must be where at first that B can catch A.

16 Let $A B C$ be a triangle. Let point X be in the triangle and $A X$ intersects $B C$ in Y. Draw the perpendiculars $Y P, Y Q, Y R, Y S$ to lines $C A, C X, B X, B A$ respectively. Find the necessary and sufficient condition for X such that $P Q R S$ be cyclic .

17 Let $p=4 k+1$ be a prime. Prove that p has at least $\frac{\phi(p-1)}{2}$ primitive roots.
18 Prove that for any n, there is a subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of \mathbb{N} such that for each subset S of $\{1, \ldots, n\}$, $\sum_{i \in S} a_{i}$ has the same set of prime divisors.

19 Find all integer solutions of $p^{3}=p^{2}+q^{2}+r^{2}$ where p, q, r are primes.
$20 \quad p(x)$ is a polynomial in $\mathbb{Z}[x]$ such that for each $m, n \in \mathbb{N}$ there is an integer a such that $n \mid p\left(a^{m}\right)$. Prove that 0 or 1 is a root of $p(x)$.
$21 a_{1}, a_{2}, \ldots, a_{n}$ are integers, not all equal. Prove that there exist infinitely many prime numbers p such that for some k

$$
p \mid a_{1}^{k}+\cdots+a_{n}^{k}
$$

22 Suppose that \mathcal{F} is a family of subsets of X. A, B are two subsets of X s.t. each element of \mathcal{F} has non-empty intersection with A, B. We know that no subset of X with $n-1$ elements has this property. Prove that there is a representation A, B in the form $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$, such that for each $1 \leq i \leq n$, there is an element of \mathcal{F} containing both a_{i}, b_{i}.
$23 \quad \mathcal{F}$ is a family of 3 -subsets of set X. Every two distinct elements of X are exactly in k elements of \mathcal{F}. It is known that there is a partition of \mathcal{F} to sets X_{1}, X_{2} such that each element of \mathcal{F} has non-empty intersection with both X_{1}, X_{2}. Prove that $|X| \leq 4$.

24 In triangle $A B C$, points M, N lie on line $A C$ such that $M A=A B$ and $N B=N C$. Also K, L lie on line $B C$ such that $K A=K B$ and $L A=L C$. It is know that $K L=\frac{1}{2} B C$ and $M N=A C$. Find angles of triangle $A B C$.

25 Finitely many convex subsets of \mathbb{R}^{3} are given, such that every three have non-empty intersection. Prove that there exists a line in \mathbb{R}^{3} that intersects all of these subsets.

26 Finitely many points are given on the surface of a sphere, such that every four of them lie on the surface of open hemisphere. Prove that all points lie on the surface of an open hemisphere.
$27 \Delta_{1}, \ldots, \Delta_{n}$ are n concurrent segments (their lines concur) in the real plane. Prove that if for every three of them there is a line intersecting these three segments, then there is a line that
intersects all of the segments.
28 Find all prime numbers p such that $p=m^{2}+n^{2}$ and $p \mid m^{3}+n^{3}-4$.
29 Incircle of triangle $A B C$ touches $A B, A C$ at $P, Q . B I, C I$ intersect with $P Q$ at K, L. Prove that circumcircle of $I L K$ is tangent to incircle of $A B C$ if and only if $A B+A C=3 B C$.

30 Find all polynomials $p \in \mathbb{Z}[x]$ such that $(m, n)=1 \Rightarrow(p(m), p(n))=1$

