

National Math Olympiad (3rd Round) 2004

www.artofproblemsolving.com/community/c3491

by Omid Hatami, sam-n, behzad

1 We say $m \circ n$ for natural m,n \iff

nth number of binary representation of m is 1 or mth number of binary representation of n is 1.

and we say $m \bullet n$ if and only if m, n doesn't have the relation \circ

We say $A \subset \mathbb{N}$ is golden $\iff \forall U, V \subset A$ that are finite and arenot empty and $U \cap V = \emptyset$, There exist $z \in A$ that $\forall x \in U, y \in V$ we have $z \circ x, z \bullet y$ Suppose \mathbb{P} is set of prime numbers. Prove if $\mathbb{P} = P_1 \cup ... \cup P_k$ and $P_i \cap P_j = \emptyset$ then one of

$$P_1, ..., P_k$$
 is golden.

2 *A* is a compact convex set in plane. Prove that there exists a point $O \in A$, such that for every line XX' passing through O, where X and X' are boundary points of A, then

$$\frac{1}{2} \leq \frac{OX}{OX'} \leq 2.$$

- **3** Suppose $V = \mathbb{Z}_2^n$ and for a vector $x = (x_1, ...x_n)$ in V and permutation σ . We have $x_{\sigma} = (x_{\sigma(1)}, ..., x_{\sigma(n)})$ Suppose n = 4k + 2, 4k + 3 and $f : V \to V$ is injective and if x and y differ in more than n/2 places then f(x) and f(y) differ in more than n/2 places. Prove there exist permutaion σ and vector v that $f(x) = x_{\sigma} + v$ **4** We have finite white and finite black points that for each 4 oints there is a line that white points
- 4 We have finite white and finite black points that for each 4 oints there is a line that white points and black points are at different sides of this line. Prove there is a line that all white points and black points are at different side of this line.
- **5** assume that k,n are two positive integer $k \le n$ count the number of permutation $\{1, ..., n\}$ st for any $1 \le i, j \le k$ and any positive integer m we have $f^m(i) \ne j$ (f^m meas iterarte function,)
- 6 assume that we have a n*n table we fill it with 1,...,n such that each number exists exactly n times prove that there exist a row or column such that at least \sqrt{n} diffrent number are contained.
- 7 Suppose *F* is a polygon with lattice vertices and sides paralell to x-axis and y-axis. Suppose S(F), P(F) are area and perimeter of *F*. Find the smallest k that: $S(F) \le k \cdot P(F)^2$

- 8 \mathbb{P} is a n-gon with sides $l_1, ..., l_n$ and vertices on a circle. Prove that no n-gon with this sides has area more than \mathbb{P}
- 9 Let *ABC* be a triangle, and *O* the center of its circumcircle. Let a line through the point *O* intersect the lines *AB* and *AC* at the points *M* and *N*, respectively. Denote by *S* and *R* the midpoints of the segments *BN* and *CM*, respectively. Prove that $\angle ROS = \angle BAC$.
- **10** $f : \mathbb{R}^2 \to \mathbb{R}^2$ is injective and surjective. Distance of X and Y is not less than distance of f(X) and f(Y). Prove for A in plane:

 $S(A) \geq S(f(A))$

where S(A) is area of A

- 11 assume that ABC is acute traingle and AA' is median we extend it until it meets circumcircle at A". let AP_a be a diameter of the circumcircle. the pependicular from A' to AP_a meets the tangent to circumcircle at A" in the point X_a ; we define X_b, X_c similary . prove that X_a, X_b, X_c are one a line.
- **12** \mathbb{N}_{10} is generalization of \mathbb{N} that every hypernumber in \mathbb{N}_{10} is something like: $\overline{\ldots a_2 a_1 a_0}$ with $a_i \in 0, 1..9$ (Notice that $\overline{-000} \in \mathbb{N}_{-}$)

(Notice that $\overline{...000} \in \mathbb{N}_{10}$) Also we easily have +, * in \mathbb{N}_{10} . first k number of a * b= first k nubmer of (first k number of a * first k number of b) first k number of a + b= first k nubmer of (first k number of a + first k number of b) Fore example $\overline{...999} + \overline{...0001} = \overline{...000}$ Prove that every monic polynomial in $\mathbb{N}_{10}[x]$ with degree d has at most d^2 roots.

13 Suppose *f* is a polynomial in $\mathbb{Z}[X]$ and m is integer .Consider the sequence a_i like this $a_1 = m$ and $a_{i+1} = f(a_i)$ find all polynomials *f* and all integers *m* that for each *i*:

 $a_i | a_{i+1}$

14 We define $f : \mathbb{N} \to \mathbb{N}$, $f(n) = \sum_{k=1}^{n} (k, n)$.

a) Show that if gcd(m, n) = 1 then we have $f(mn) = f(m) \cdot f(n)$;

b) Show that $\sum_{d|n} f(d) = nd(n)$.

15 This problem is easy but nobody solved it. point *A* moves in a line with speed *v* and *B* moves also with speed *v'* that at every time the direction of move of *B* goes from *A*.We know $v \ge v'$.If we know the point of beginning of path of *A*, then *B* must be where at first that *B* can catch *A*.

16 Let ABC be a triangle. Let point X be in the triangle and AX intersects BC in Y. Draw the perpendiculars YP, YQ, YR, YS to lines CA, CX, BX, BA respectively. Find the necessary and sufficient condition for X such that PQRS be cyclic. Let p = 4k + 1 be a prime. Prove that p has at least $\frac{\phi(p-1)}{2}$ primitive roots. 17 Prove that for any *n*, there is a subset $\{a_1, \ldots, a_n\}$ of \mathbb{N} such that for each subset *S* of $\{1, \ldots, n\}$, 18 $\sum_{i \in S} a_i$ has the same set of prime divisors. Find all integer solutions of $p^3 = p^2 + q^2 + r^2$ where p, q, r are primes. 19 p(x) is a polynomial in $\mathbb{Z}[x]$ such that for each $m, n \in \mathbb{N}$ there is an integer a such that $n \mid p(a^m)$. 20 Prove that 0 or 1 is a root of p(x). 21 a_1, a_2, \ldots, a_n are integers, not all equal. Prove that there exist infinitely many prime numbers p such that for some k $p \mid a_1^k + \dots + a_n^k.$ Suppose that \mathcal{F} is a family of subsets of X. A, B are two subsets of X s.t. each element of 22 \mathcal{F} has non-empty intersection with A, B. We know that no subset of X with n-1 elements has this property. Prove that there is a representation A, B in the form $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \dots, b_n\}$, such that for each $1 \le i \le n$, there is an element of \mathcal{F} containing both a_i, b_i . 23 \mathcal{F} is a family of 3-subsets of set X. Every two distinct elements of X are exactly in k elements of \mathcal{F} . It is known that there is a partition of \mathcal{F} to sets X_1, X_2 such that each element of \mathcal{F} has non-empty intersection with both X_1, X_2 . Prove that $|X| \le 4$. In triangle ABC, points M, N lie on line AC such that MA = AB and NB = NC. Also K, L lie 24 on line BC such that KA = KB and LA = LC. It is know that $KL = \frac{1}{2}BC$ and MN = AC. Find angles of triangle ABC. Finitely many convex subsets of \mathbb{R}^3 are given, such that every three have non-empty intersec-25 tion. Prove that there exists a line in \mathbb{R}^3 that intersects all of these subsets. 26 Finitely many points are given on the surface of a sphere, such that every four of them lie on the surface of open hemisphere. Prove that all points lie on the surface of an open hemisphere. $\Delta_1, \ldots, \Delta_n$ are n concurrent segments (their lines concur) in the real plane. Prove that if for 27 every three of them there is a line intersecting these three segments, then there is a line that

intersects all of the segments.

28	Find all prime numbers p such that $p = m^2 + n^2$ and $p \mid m^3 + n^3 - 4$.
29	Incircle of triangle ABC touches AB , AC at P , Q . BI , CI intersect with PQ at K , L . Prove that circumcircle of ILK is tangent to incircle of ABC if and only if $AB + AC = 3BC$.
30	Find all polynomials $p \in \mathbb{Z}[x]$ such that $(m, n) = 1 \Rightarrow (p(m), p(n)) = 1$

Act of Problem Solving is an ACS WASC Accredited School.