Art of Problem Solving

AoPS Community

National Math Olympiad (3rd Round) 2012

www.artofproblemsolving.com/community/c3499
by goodar2006

- \quad Special Lesson's Exam (First Part)

1 Prove that the number of incidences of n distinct points on n distinct lines in plane is $\mathcal{O}\left(n^{\frac{4}{3}}\right)$. Find a configuration for which $\Omega\left(n^{\frac{4}{3}}\right)$ incidences happens.

2 Consider a set of n points in plane. Prove that the number of isosceles triangles having their vertices among these n points is $\mathcal{O}\left(n^{\frac{7}{3}}\right)$. Find a configuration of n points in plane such that the number of equilateral triangles with vertices among these n points is $\Omega\left(n^{2}\right)$.

3 Prove that if n is large enough, among any n points of plane we can find 1000 points such that these 1000 points have pairwise distinct distances. Can you prove the assertion for n^{α} where α is a positive real number instead of 1000 ?

4 Prove that from an $n \times n$ grid, one can find $\Omega\left(n^{\frac{5}{3}}\right)$ points such that no four of them are vertices of a square with sides parallel to lines of the grid. Imagine yourself as Erdos (!) and guess what is the best exponent instead of $\frac{5}{3}$!

- \quad Special Lesson's Exam (Second Part)

1 Prove that for each coloring of the points inside or on the boundary of a square with 1391 colors, there exists a monochromatic regular hexagon.

2 Suppose $W(k, 2)$ is the smallest number such that if $n \geq W(k, 2)$, for each coloring of the set $\{1,2, \ldots, n\}$ with two colors there exists a monochromatic arithmetic progression of length k. Prove that
$W(k, 2)=\Omega\left(2^{\frac{k}{2}}\right)$.
3 Prove that if n is large enough, then for each coloring of the subsets of the set $\{1,2, \ldots, n\}$ with 1391 colors, two non-empty disjoint subsets A and B exist such that A, B and $A \cup B$ are of the same color.

4 Prove that if n is large enough, in every $n \times n$ square that a natural number is written on each one of its cells, one can find a subsquare from the main square such that the sum of the numbers is this subsquare is divisible by 1391.

- Number Theory Exam

$1 \quad P(x)$ is a nonzero polynomial with integer coefficients. Prove that there exists infinitely many prime numbers q such that for some natural number $n, q \mid 2^{n}+P(n)$.
Proposed by Mohammad Gharakhani
2 Prove that there exists infinitely many pairs of rational numbers $\left(\frac{p_{1}}{q}, \frac{p_{2}}{q}\right)$ with $p_{1}, p_{2}, q \in \mathbb{N}$ with the following condition:

$$
\left|\sqrt{3}-\frac{p_{1}}{q}\right|<q^{-\frac{3}{2}},\left|\sqrt{2}-\frac{p_{2}}{q}\right|<q^{-\frac{3}{2}} .
$$

Proposed by Mohammad Gharakhani

$3 \quad p$ is an odd prime number. Prove that there exists a natural number x such that x and $4 x$ are both primitive roots modulo p.
Proposed by Mohammad Gharakhani
$4 \quad P(x)$ and $Q(x)$ are two polynomials with integer coefficients such that $P(x) \mid Q(x)^{2}+1$.
a) Prove that there exists polynomials $A(x)$ and $B(x)$ with rational coefficients and a rational number c such that $P(x)=c\left(A(x)^{2}+B(x)^{2}\right)$.
b) If $P(x)$ is a monic polynomial with integer coefficients, Prove that there exists two polynomials $A(x)$ and $B(x)$ with integer coefficients such that $P(x)$ can be written in the form of $A(x)^{2}+B(x)^{2}$.

Proposed by Mohammad Gharakhani

5 Let p be a prime number. We know that each natural number can be written in the form

$$
\sum_{i=0}^{t} a_{i} p^{i}\left(t, a_{i} \in \mathbb{N} \cup\{0\}, 0 \leq a_{i} \leq p-1\right)
$$

Uniquely.
Now let T be the set of all the sums of the form

$$
\sum_{i=0}^{\infty} a_{i} p^{i}\left(0 \leq a_{i} \leq p-1\right)
$$

(This means to allow numbers with an infinite base p representation). So numbers that for some $N \in \mathbb{N}$ all the coefficients $a_{i}, i \geq N$ are zero are natural numbers. (In fact we can consider members of T as sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ for which $\forall_{i \in \mathbb{N}}: 0 \leq a_{i} \leq p-1$.) Now we generalize addition and multiplication of natural numbers to this set so that it becomes a ring (it's not necessary to prove this fact). For example:
$1+\left(\sum_{i=0}^{\infty}(p-1) p^{i}\right)=1+(p-1)+(p-1) p+(p-1) p^{2}+\ldots=p+(p-1) p+(p-1) p^{2}+\ldots=$ $p^{2}+(p-1) p^{2}+(p-1) p^{3}+\ldots=p^{3}+(p-1) p^{3}+\ldots=\ldots$
So in this sum, coefficients of all the numbers $p^{k}, k \in \mathbb{N}$ are zero, so this sum is zero and thus we can conclude that $\sum_{i=0}^{\infty}(p-1) p^{i}$ is playing the role of -1 (the additive inverse of 1) in this ring. As an example of multiplication consider

$$
(1+p)\left(1+p+p^{2}+p^{3}+\ldots\right)=1+2 p+2 p^{2}+\cdots
$$

Suppose p is 1 modulo 4. Prove that there exists $x \in T$ such that $x^{2}+1=0$.
Proposed by Masoud Shafaei

- Geometry Exam

1 Fixed points B and C are on a fixed circle ω and point A varies on this circle. We call the midpoint of arc $B C$ (not containing A) D and the orthocenter of the triangle $A B C, H$. Line $D H$ intersects circle ω again in K. Tangent in A to circumcircle of triangle $A K H$ intersects line $D H$ and circle ω again in L and M respectively. Prove that the value of $\frac{A L}{A M}$ is constant.

Proposed by Mehdi E'tesami Fard

2 Let the Nagel point of triangle $A B C$ be N. We draw lines from B and C to N so that these lines intersect sides $A C$ and $A B$ in D and E respectively. M and T are midpoints of segments $B E$ and $C D$ respectively. P is the second intersection point of circumcircles of triangles $B E N$ and $C D N . l_{1}$ and l_{2} are perpendicular lines to $P M$ and $P T$ in points M and T respectively. Prove that lines l_{1} and l_{2} intersect on the circumcircle of triangle $A B C$.

Proposed by Nima Hamidi

3 Cosider ellipse ϵ with two foci A and B such that the lengths of it's major axis and minor axis are $2 a$ and $2 b$ respectively. From a point T outside of the ellipse, we draw two tangent lines $T P$ and $T Q$ to the ellipse ϵ. Prove that

$$
\frac{T P}{T Q} \geq \frac{b}{a} .
$$

Proposed by Morteza Saghafian

4 The incircle of triangle $A B C$ for which $A B \neq A C$, is tangent to sides $B C, C A$ and $A B$ in points D, E and F respectively. Perpendicular from D to $E F$ intersects side $A B$ at X, and the second intersection point of circumcircles of triangles $A E F$ and $A B C$ is T. Prove that $T X \perp T F$.
Proposed By Pedram Safaei

AoPS Community

2012 Iran MO (3rd Round)

$5 \quad$ Two fixed lines l_{1} and l_{2} are perpendicular to each other at a point Y. Points X and O are on l_{2} and both are on one side of line l_{1}. We draw the circle ω with center O and radius $O Y$. A variable point Z is on line l_{1}. Line $O Z$ cuts circle ω in P. Parallel to $X P$ from O intersects $X Z$ in S. Find the locus of the point S.
Proposed by Nima Hamidi

- Combinatorics Exam

1 We've colored edges of K_{n} with $n-1$ colors. We call a vertex rainbow if it's connected to all of the colors. At most how many rainbows can exist?

Proposed by Morteza Saghafian
2 Suppose $s, k, t \in \mathbb{N}$. We've colored each natural number with one of the k colors, such that each color is used infinitely many times. We want to choose a subset \mathcal{A} of \mathbb{N} such that it has t disjoint monochromatic s-element subsets. What is the minimum number of elements of A ?
Proposed by Navid Adham
3 In a tree with n vertices, for each vertex x_{i}, denote the longest paths passing through it by $l_{i}^{1}, l_{i}^{2}, \ldots, l_{i}^{k_{i}} . x_{i}$ cuts those longest paths into two parts with $\left(a_{i}^{1}, b_{i}^{1}\right),\left(a_{i}^{2}, b_{i}^{2}\right), \ldots,\left(a_{i}^{k_{i}}, b_{i}^{k_{i}}\right)$ vertices respectively. If $\max _{j=1, \ldots, k_{i}}\left\{a_{i}^{j} \times b_{i}^{j}\right\}=p_{i}$, find the maximum and minimum values of $\sum_{i=1}^{n} p_{i}$.
Proposed by Sina Rezaei
4 a) Prove that for all $m, n \in \mathbb{N}$ there exists a natural number a such that if we color every 3 -element subset of the set $\mathcal{A}=\{1,2,3, \ldots, a\}$ using 2 colors red and green, there exists an m element subset of \mathcal{A} such that all 3 -element subsets of it are red or there exists an n-element subset of \mathcal{A} such that all 3 -element subsets of it are green.
b) Prove that for all $m, n \in \mathbb{N}$ there exists a natural number a such that if we color every k element subset $(k>3)$ of the set $\mathcal{A}=\{1,2,3, \ldots, a\}$ using 2 colors red and green, there exists an m-element subset of \mathcal{A} such that all k-element subsets of it are red or there exists an n element subset of \mathcal{A} such that all k-element subsets of it are green.

- Algebra Exam

1 Suppose $0<m_{1}<\ldots<m_{n}$ and $m_{i} \equiv i(\bmod 2)$. Prove that the following polynomial has at most n real roots. ($\forall 1 \leq i \leq n: a_{i} \in \mathbb{R}$).

$$
a_{0}+a_{1} x^{m_{1}}+a_{2} x^{m_{2}}+\ldots+a_{n} x^{m_{n}}
$$

2 Suppose $N \in \mathbb{N}$ is not a perfect square, hence we know that the continued fraction of \sqrt{N} is of the form $\sqrt{N}=\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{n}}\right]$. If $a_{1} \neq 1$ prove that $a_{i} \leq 2 a_{0}$.

3 Suppose p is a prime number and $a, b, c \in \mathbb{Q}^{+}$are rational numbers;
a) Prove that $\mathbb{Q}(\sqrt[p]{a}+\sqrt[p]{b})=\mathbb{Q}(\sqrt[p]{a}, \sqrt[p]{b})$.
b) If $\sqrt[p]{b} \in \mathbb{Q}(\sqrt[p]{a})$, prove that for a nonnegative integer k we have $\sqrt[p]{\frac{b}{a^{k}}} \in \mathbb{Q}$.
c) If $\sqrt[p]{a}+\sqrt[p]{b}+\sqrt[p]{c} \in \mathbb{Q}$, then prove that numbers $\sqrt[p]{a}, \sqrt[p]{b}$ and $\sqrt[p]{c}$ are rational.

4 Suppose $f(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$ for which $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$. Prove that the following polynomial has only one positive real root like α

$$
x^{n}+\Re\left(a_{1}\right) x^{n-1}-\left|a_{2}\right| x^{n-2}-\ldots-\left|a_{n}\right|
$$

and the following polynomial has only one positive real root like β

$$
x^{n}-\Re\left(a_{1}\right) x^{n-1}-\left|a_{2}\right| x^{n-2}-\ldots-\left|a_{n}\right| .
$$

And roots of the polynomial $f(z)$ satisfy $-\beta \leq \Re(z) \leq \alpha$.
5 Let p be an odd prime number and let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}^{+}$be rational numbers. Prove that

$$
\mathbb{Q}\left(\sqrt[p]{a_{1}}+\sqrt[p]{a_{2}}+\ldots+\sqrt[p]{a_{n}}\right)=\mathbb{Q}\left(\sqrt[p]{a_{1}}, \sqrt[p]{a_{2}}, \ldots, \sqrt[p]{a_{n}}\right)
$$

- Final Exam

1 Let G be a simple undirected graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$. We denote the number of acyclic orientations of G with $f(G)$.
a) Prove that $f(G) \leq f\left(G-v_{1}\right)+f\left(G-v_{2}\right)+\ldots+f\left(G-v_{n}\right)$.
b) Let e be an edge of the graph G. Denote by G^{\prime} the graph obtained by omiting e and making it's two endpoints as one vertex. Prove that $f(G)=f(G-e)+f\left(G^{\prime}\right)$.
c) Prove that for each $\alpha>1$, there exists a graph G and an edge e of it such that $\frac{f(G)}{f(G-e)}<\alpha$.
Proposed by Morteza Saghafian
2 Suppose S is a convex figure in plane with area 10. Consider a chord of length 3 in S and let A and B be two points on this chord which divide it into three equal parts. For a variable point X

2012 Iran MO (3rd Round)

in $S-\{A, B\}$, let A^{\prime} and B^{\prime} be the intersection points of rays $A X$ and $B X$ with the boundary of S. Let S^{\prime} be those points X for which $A A^{\prime}>\frac{1}{3} B B^{\prime}$. Prove that the area of S^{\prime} is at least 6 . Proposed by Ali Khezeli

3 Prove that for each $n \in \mathbb{N}$ there exist natural numbers $a_{1}<a_{2}<\ldots<a_{n}$ such that $\phi\left(a_{1}\right)>$ $\phi\left(a_{2}\right)>\ldots>\phi\left(a_{n}\right)$.
Proposed by Amirhossein Gorzi
4 We have n bags each having 100 coins. All of the bags have 10 gram coins except one of them which has 9 gram coins. We have a balance which can show weights of things that have weight of at most 1 kilogram. At least how many times shall we use the balance in order to find the different bag?
Proposed By Hamidreza Ziarati
5 We call the three variable polynomial P cyclic if $P(x, y, z)=P(y, z, x)$. Prove that cyclic three variable polynomials P_{1}, P_{2}, P_{3} and P_{4} exist such that for each cyclic three variable polynomial P, there exists a four variable polynomial Q such that $P(x, y, z)=Q\left(P_{1}(x, y, z), P_{2}(x, y, z), P_{3}(x, y, z), P_{4}(x\right.$,
Solution by Mostafa Eynollahzade and Erfan Salavati
6 a) Prove that $a>0$ exists such that for each natural number n, there exists a convex n-gon P in plane with lattice points as vertices such that the area of P is less than $a n^{3}$.
b) Prove that there exists $b>0$ such that for each natural number n and each n-gon P in plane with lattice points as vertices, the area of P is not less than $b n^{2}$.
c) Prove that there exist $\alpha, c>0$ such that for each natural number n and each n-gon P in plane with lattice points as vertices, the area of P is not less than $\mathrm{cn}^{2+\alpha}$.

Proposed by Mostafa Eynollahzade
7 The city of Bridge Village has some highways. Highways are closed curves that have intersections with each other or themselves in 4 -way crossroads. Mr.Bridge Lover, mayor of the city, wants to build a bridge on each crossroad in order to decrease the number of accidents. He wants to build the bridges in such a way that in each highway, cars pass above a bridge and under a bridge alternately. By knowing the number of highways determine that this action is possible or not.

Proposed by Erfan Salavati
8 a) Does there exist an infinite subset S of the natural numbers, such that $S \neq \mathbb{N}$, and such that for each natural number $n \notin S$, exactly n members of S are coprime with n ?
b) Does there exist an infinite subset S of the natural numbers, such that for each natural number $n \in S$, exactly n members of S are coprime with n ?

Proposed by Morteza Saghafian

