AoPS Community

Hungary-Israel Binational 1991

www.artofproblemsolving.com/community/c3503
by M4RIO, April

1 Suppose $f(x)$ is a polynomial with integer coefficients such that $f(0)=11$ and $f\left(x_{1}\right)=$ $f\left(x_{2}\right)=\ldots=f\left(x_{n}\right)=2002$ for some distinct integers $x_{1}, x_{2}, \ldots, x_{n}$. Find the largest possible value of n.

2 The vertices of a square sheet of paper are A, B, C, D. The sheet is folded in a way that the point D is mapped to the point D^{\prime} on the side $B C$. Let A^{\prime} be the image of A after the folding, and let E be the intersection point of $A B$ and $A^{\prime} D^{\prime}$. Let r be the inradius of the triangle $E B D^{\prime}$. Prove that $r=A^{\prime} E$.

3 Let \mathcal{H}_{n} be the set of all numbers of the form $2 \pm \sqrt{2 \pm \sqrt{2 \pm \ldots \pm \sqrt{2}}}$ where "root signs" appear n times.
(a) Prove that all the elements of \mathcal{H}_{n} are real.
(b) Computer the product of the elements of \mathcal{H}_{n}.
(c) The elements of \mathcal{H}_{11} are arranged in a row, and are sorted by size in an ascending order. Find the position in that row, of the elements of \mathcal{H}_{11} that corresponds to the following combination of \pm signs:

$$
+++++-++-+-
$$

4 Find all the real values of λ for which the system of equations $x+y+z+v=0$ and $(x y+y z+z v)+$ $\lambda(x z+x v+y v)=0$, has a unique real solution.

