AoPS Community

Hungary-Israel Binational 1992

www.artofproblemsolving.com/community/c3504
by N.T.TUAN, Pascual2005

- Individual

1 Prove that if c is a positive number distinct from 1 and n a positive integer, then

$$
n^{2} \leq \frac{c^{n}+c^{-n}-2}{c+c^{-1}-2} .
$$

2 A set S consists of 1992 positive integers among whose units digits all 10 digits occur. Show that there is such a set S having no nonempty subset S_{1} whose sum of elements is divisible by 2000 .

3 We are given 100 strictly increasing sequences of positive integers: $A_{i}=\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots\right), i=$ $1,2, \ldots, 100$. For $1 \leq r, s \leq 100$ we dene the following quantities: $f_{r}(u)=$ the number of elements of A_{r} not exceeding $n ; f_{r, s}(u)=$ the number of elements of $A_{r} \cap A_{s}$ not exceeding n. Suppose that $f_{r}(n) \geq \frac{1}{2} n$ for all r and n. Prove that there exists a pair of indices (r, s) with $r \neq s$ such that $f_{r, s}(n) \geq \frac{8 n}{33}$ for at least ve distinct $n-s$ with $1 \leq n<19920$.

4 We are given a convex pentagon $A B C D E$ in the coordinate plane such that A, B, C, D, E are lattice points. Let Q denote the convex pentagon bounded by the five diagonals of the pentagon $A B C D E$ (so that the vertices of Q are the interior points of intersection of diagonals of the pentagon $A B C D E$). Prove that there exists a lattice point inside of Q or on the boundary of Q.

- Team

1 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
Prove that $1+L_{2^{j}} \equiv 0\left(\bmod 2^{j+1}\right)$ for $j \geq 0$.
2 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is
known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
Prove that

$$
\sum_{k=1}^{n}\left[\alpha^{k} F_{k}+\frac{1}{2}\right]=F_{2 n+1} \forall n>1
$$

3 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
We call a nonnegative integer r-Fibonacci number if it is a sum of r (not necessarily distinct) Fibonacci numbers. Show that there innitely many positive integers that are not r-Fibonacci numbers for any $r, 1 \leq r \leq 5$.

4 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
Prove that $F_{n-1} F_{n} F_{n+1} L_{n-1} L_{n} L_{n+1}(n \geq 2)$ is not a perfect square.
5 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
Show that $L_{2 n+1}+(-1)^{n+1}(n \geq 1)$ can be written as a product of three (not necessarily distinct) Fibonacci numbers.

6 We examine the following two sequences: The Fibonacci sequence: $F_{0}=0, F_{1}=1, F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 2$; The Lucas sequence: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, L_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
The coordinates of all vertices of a given rectangle are Fibonacci numbers. Suppose that the rectangle is not such that one of its vertices is on the x-axis and another on the y-axis. Prove that either the sides of the rectangle are parallel to the axes, or make an angle of 45° with the axes.

