

AoPS Community

Hungary-Israel Binational 1993

www.artofproblemsolving.com/community/c3505 by N.T.TUAN

dividual

- April 21st
- **1** Find all pairs of coprime natural numbers *a* and *b* such that the fraction $\frac{a}{b}$ is written in the decimal system as *b*.*a*.
- **2** Determine all polynomials f(x) with real coeffcients that satisfy

$$f(x^2 - 2x) = f^2(x - 2)$$

for all x.

3 Distinct points *A*, *B*, *C*, *D*, *E* are given in this order on a semicircle with radius 1. Prove that

 $AB^2 + BC^2 + CD^2 + DE^2 + AB \cdot BC \cdot CD + BC \cdot CD \cdot DE < 4.$

- **4** Find the largest possible number of rooks that can be placed on a $3n \times 3n$ chessboard so that each rook is attacked by at most one rook.
- Team
- April 22nd
- 1 In the questions below: *G* is a nite group; $H \leq G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Suppose $k \ge 2$ is an integer such that for all $x, y \in G$ and $i \in \{k - 1, k, k + 1\}$ the relation $(xy)^i = x^i y^i$ holds. Show that G is Abelian.

2 In the questions below: *G* is a nite group; $H \leq G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

AoPS Community

1993 Hungary-Israel Binational

Suppose that $n \ge 1$ is such that the mapping $x \mapsto x^n$ from G to itself is an isomorphism. Prove that for each $a \in G, a^{n-1} \in Z(G)$.

3 In the questions below: *G* is a nite group; $H \le G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Show that every element of S_n is a product of 2-cycles.

4 In the questions below: *G* is a nite group; $H \leq G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Let $H \leq G$ and $a, b \in G$. Prove that $|aH \cap Hb|$ is either zero or a divisor of |H|.

5 In the questions below: *G* is a nite group; $H \le G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Let $H \leq G$, |H| = 3. What can be said about $|N_G(H) : C_G(H)|$?

6 In the questions below: *G* is a nite group; $H \le G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Let $a, b \in G$. Suppose that $ab^2 = b^3a$ and $ba^2 = a^3b$. Prove that a = b = 1.

7 In the questions below: *G* is a nite group; $H \le G$ a subgroup of G; |G : H| the index of *H* in G; |X| the number of elements of $X \subseteq G$; Z(G) the center of G; G' the commutator subgroup of G; $N_G(H)$ the normalizer of *H* in G; $C_G(H)$ the centralizer of *H* in *G*; and S_n the *n*-th symmetric group.

Assume |G'| = 2. Prove that |G:G'| is even.

Art of Problem Solving is an ACS WASC Accredited School.