AoPS Community

Hungary-Israel Binational 1994

www.artofproblemsolving.com/community/c3506
by April

1 Let m and n be two distinct positive integers. Prove that there exists a real number x such that $\frac{1}{3} \leq\{x n\} \leq \frac{2}{3}$ and $\frac{1}{3} \leq\{x m\} \leq \frac{2}{3}$. Here, for any real number y, $\{y\}$ denotes the fractional part of y. For example $\{3.1415\}=0.1415$.

2 Let $a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}$ be n positive numbers $(k<n)$. Suppose that the values of a_{k+1}, a_{k+2}, \ldots, a_{n} are fixed. Choose the values of $a_{1}, a_{2}, \ldots, a_{k}$ that minimize the sum $\sum_{i, j, i \neq j} \frac{a_{i}}{a_{j}}$

3 Three given circles have the same radius and pass through a common point P. Their other points of pairwise intersections are A, B, C. We define triangle $A^{\prime} B^{\prime} C^{\prime}$, each of whose sides is tangent to two of the three circles. The three circles are contained in $\triangle A^{\prime} B^{\prime} C^{\prime}$. Prove that the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is at least nine times the area of $\triangle A B C$
$4 \quad$ An $[\mathrm{i}] n-m$ society $[/ \mathrm{i}]$ is a group of n girls and m boys. Prove that there exists numbers n_{0} and m_{0} such that every [i] $n_{0}-m_{0}$ society[/i] contains a subgroup of five boys and five girls with the following property: either all of the boys know all of the girls or none of the boys knows none of the girls.

