AoPS Community

Hungary-Israel Binational 1995

www.artofproblemsolving.com/community/c3507
by April

1 Let the sum of the first n primes be denoted by S_{n}. Prove that for any positive integer n, there exists a perfect square between S_{n} and S_{n+1}.

2 Let $P_{1}, P_{2}, P_{3}, P_{4}$ be five distinct points on a circle. The distance of P from the line $P_{i} P_{k}$ is denoted by $d_{i k}$. Prove that $d_{12} d_{34}=d_{13} d_{24}$.

3 The polynomial $f(x)=a x^{2}+b x+c$ has real coefficients and satisfies $|f(x)| \leq 1$ for all $x \in[0,1]$. Find the maximal value of $|a|+|b|+|c|$.

4 Consider a convex polyhedron whose faces are triangles. Prove that it is possible to color its edges by either red or blue, in a way that the following property is satisfied: one can travel from any vertex to any other vertex while passing only along red edges, and can also do this while passing only along blue edges.

