

AoPS Community

1996 Hungary-Israel Binational

Hungary-Israel Binational 1996

www.artofproblemsolving.com/community/c3508 by bambaman

- 1 Find all integer sequences of the form $x_i, 1 \le i \le 1997$, that satisfy $\sum_{k=1}^{1997} 2^{k-1} x_k^{1997} = 1996 \prod_{k=1}^{1997} x_k$.
- 2 n > 2 is an integer such that n^2 can be represented as a difference of cubes of 2 consecutive positive integers. Prove that n is a sum of 2 squares of positive integers, and that such n does exist.
- **3** A given convex polyhedron has no vertex which belongs to exactly 3 edges. Prove that the number of faces of the polyhedron that are triangles, is at least 8.
- 4 a_1, a_2, \dots, a_n is a sequence of real numbers, and b_1, b_2, \dots, b_n are real numbers that satisfy the condition $1 \ge b_1 \ge b_2 \ge \dots \ge b_n \ge 0$. Prove that there exists a natural number $k \le n$ that satisifes $|a_1b_1 + a_2b_2 + \dots + a_nb_n| \le |a_1 + a_2 + \dots + a_k|$

