AoPS Community

Hungary-Israel Binational 1996

www.artofproblemsolving.com/community/c3508
by bambaman

1 Find all integer sequences of the form $x_{i}, 1 \leq i \leq 1997$, that satisfy $\sum_{k=1}^{1997} 2^{k-1} x_{k}^{1997}=1996 \prod_{k=1}^{1997} x_{k}$.
$2 n>2$ is an integer such that n^{2} can be represented as a difference of cubes of 2 consecutive positive integers. Prove that n is a sum of 2 squares of positive integers, and that such n does exist.

3 A given convex polyhedron has no vertex which belongs to exactly 3 edges. Prove that the number of faces of the polyhedron that are triangles, is at least 8.
$4 a_{1}, a_{2}, \cdots, a_{n}$ is a sequence of real numbers, and $b_{1}, b_{2}, \cdots, b_{n}$ are real numbers that satisfy the condition $1 \geq b_{1} \geq b_{2} \geq \cdots \geq b_{n} \geq 0$. Prove that there exists a natural number $k \leq n$ that satisifes $\left|a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right| \leq\left|a_{1}+a_{2}+\cdots+a_{k}\right|$

