

AoPS Community

1997 Hungary-Israel Binational

Hungary-Israel Binational 1997

www.artofproblemsolving.com/community/c3509 by April, Jutaro, paul_mathematics

Day 1

1	Is there an integer N such that $\left(\sqrt{1997}-\sqrt{1996} ight)^{1998}=\sqrt{N}-\sqrt{N-1}$?
2	Find all the real numbers α satisfy the following property: for any positive integer n there exists an integer m such that $\left \alpha - \frac{m}{n}\right < \frac{1}{3n}$.
3	Let <i>ABC</i> be an acute angled triangle whose circumcenter is <i>O</i> . The three diameters of the circumcircle that pass through <i>A</i> , <i>B</i> , and <i>C</i> , meet the opposite sides <i>BC</i> , <i>CA</i> , and <i>AB</i> at the points A_1 , B_1 and C_1 , respectively. The circumradius of <i>ABC</i> is of length 2 <i>P</i> , where <i>P</i> is a prime number. The lengths of OA_1 , OB_1 , OC_1 are integers. What are the lengths of the sides of the triangle?
Day	2
1	Determine the number of distinct sequences of letters of length 1997 which use each of the letters A , B , C (and no others) an odd number of times.
2	The three squares ACC_1A'' , ABB'_1A' , $BCDE$ are constructed externally on the sides of a tri- angle ABC . Let P be the center of the square $BCDE$. Prove that the lines $A'C$, $A''B$, PA are concurrent.
3	Can a closed disk can be decomposed into a union of two congruent parts having no common point?

Art of Problem Solving is an ACS WASC Accredited School.