AoPS Community

Hungary-Israel Binational 1997

www.artofproblemsolving.com/community/c3509
by April, Jutaro, paul_mathematics

Day 1

1 Is there an integer N such that $(\sqrt{1997}-\sqrt{1996})^{1998}=\sqrt{N}-\sqrt{N-1}$?
2 Find all the real numbers α satisfy the following property. for any positive integer n there exists an integer m such that $\left|\alpha-\frac{m}{n}\right|<\frac{1}{3 n}$.

3 Let $A B C$ be an acute angled triangle whose circumcenter is O. The three diameters of the circumcircle that pass through A, B, and C, meet the opposite sides $B C, C A$, and $A B$ at the points A_{1}, B_{1} and C_{1}, respectively. The circumradius of $A B C$ is of length $2 P$, where P is a prime number. The lengths of $O A_{1}, O B_{1}, O C_{1}$ are integers. What are the lengths of the sides of the triangle?

Day 2

1 Determine the number of distinct sequences of letters of length 1997 which use each of the letters A, B, C (and no others) an odd number of times.

2 The three squares $A C C_{1} A^{\prime \prime}, A B B_{1}^{\prime} A^{\prime}, B C D E$ are constructed externally on the sides of a triangle $A B C$. Let P be the center of the square $B C D E$. Prove that the lines $A^{\prime} C, A^{\prime \prime} B, P A$ are concurrent.

3 Can a closed disk can be decomposed into a union of two congruent parts having no common point?

