Art of Problem Solving

AoPS Community

Hungary-Israel Binational 1998

www.artofproblemsolving.com/community/c3510
by N.T.TUAN

Day 1

1 A player is playing the following game. In each turn he ips a coin and guesses the outcome. If his guess is correct, he gains 1 point; otherwise he loses all his points. Initially the player has no points, and plays the game until he has 2 points.
(a) Find the probability p_{n} that the game ends after exactly n ips.
(b) What is the expected number of ips needed to nish the game?

2 A triangle ABC is inscribed in a circle with center O and radius R. If the inradii of the triangles $O B C, O C A, O A B$ are r_{1}, r_{2}, r_{3}, respectively, prove that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}} \geq \frac{4 \sqrt{3}+6}{R}$.

3 Let a, b, c, m, n be positive integers. Consider the trinomial $f(x)=a x^{2}+b x+c$. Show that there exist n consecutive natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that each of the numbers $f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)$ has at least m different prime factors.

Day 2

$1 \quad$ Find all positive integers x and y such that $5^{x}-3^{y}=16$.
2 On the sides of a convex hexagon $A B C D E F$, equilateral triangles are constructd in its exterior. Prove that the third vertices of these six triangles are vertices of a regular hexagon if and only if the initial hexagon is affine regular. (A hexagon is called affine regular if it is centrally symmetric and any two opposite sides are parallel to the diagonal determine by the remaining two vertices.)
$3 \quad$ Let n be a positive integer. We consider the set P of all partitions of n into a sum of positive integers (the order is irrelevant). For every partition α, let $a_{k}(\alpha)$ be the number of summands in α that are equal to $k, k=1,2, \ldots, n$. Prove that $\sum_{\alpha \in P} \frac{1}{1^{a_{1}(\alpha)} a_{1}(\alpha)!\cdot 2^{a_{2}(\alpha)} a_{2}(\alpha)!\ldots n^{a_{n}(\alpha) a_{n}(\alpha)!}}=1$.

