

AoPS Community

1998 Hungary-Israel Binational

Hungary-Israel Binational 1998

www.artofproblemsolving.com/community/c3510 by N.T.TUAN

Day 1	
1	A player is playing the following game. In each turn he ips a coin and guesses the outcome. If his guess is correct, he gains 1 point; otherwise he loses all his points. Initially the player has no points, and plays the game until he has 2 points. (a) Find the probability p_n that the game ends after exactly n ips. (b) What is the expected number of ips needed to nish the game?
2	A triangle ABC is inscribed in a circle with center O and radius R . If the inradii of the triangles OBC, OCA, OAB are r_1, r_2, r_3 , respectively, prove that $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \ge \frac{4\sqrt{3}+6}{R}$.
3	Let a, b, c, m, n be positive integers. Consider the trinomial $f(x) = ax^2 + bx + c$. Show that there exist n consecutive natural numbers $a_1, a_2,, a_n$ such that each of the numbers $f(a_1), f(a_2),, f$ has at least m different prime factors.
Day 2	
1	Find all positive integers x and y such that $5^x - 3^y = 16$.
2	On the sides of a convex hexagon <i>ABCDEF</i> , equilateral triangles are constructd in its exterior. Prove that the third vertices of these six triangles are vertices of a regular hexagon if and only if the initial hexagon is <i>affine regular</i> . (A hexagon is called affine regular if it is centrally symmetric and any two opposite sides are parallel to the diagonal determine by the remaining two vertices.)
3	Let <i>n</i> be a positive integer. We consider the set <i>P</i> of all partitions of <i>n</i> into a sum of positive integers (the order is irrelevant). For every partition α , let $a_k(\alpha)$ be the number of summands in α that are equal to $k, k = 1, 2,, n$. Prove that $\sum_{\alpha \in P} \frac{1}{1^{a_1(\alpha)}a_1(\alpha)! \cdot 2^{a_2(\alpha)}a_2(\alpha)!n^{a_n(\alpha)}a_n(\alpha)!} = 1$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱