Art of Problem Solving

AoPS Community

Hungary-Israel Binational 1999

www.artofproblemsolving.com/community/c3511
by bambaman

Day 1

$1 \quad f(x)$ is a given polynomial whose degree at least 2 . Define the following polynomial-sequence: $g_{1}(x)=f(x), g_{n+1}(x)=f\left(g_{n}(x)\right)$, for all $n \in N$. Let r_{n} be the average of $g_{n}(x)$'s roots. If $r_{19}=99$, find r_{99}.
$22 n+1$ lines are drawn in the plane, in such a way that every 3 lines define a triangle with no right angles. What is the maximal possible number of acute triangles that can be made in this way?
$3 \quad$ Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ that satisfy $f(x+y)=f(x) f(y)-f(x y)+1$ for every $x, y \in \mathbb{Q}$.

Day 2

$1 \quad c$ is a positive integer. Consider the following recursive sequence: $a_{1}=c, a_{n+1}=c a_{n}+\sqrt{\left(c^{2}-1\right)\left(a_{n}^{2}-1\right)}$, for all $n \in N$.
Prove that all the terms of the sequence are positive integers.
2 The function $f(x, y, z)=\frac{x^{2}+y^{2}+z^{2}}{x+y+z}$ is defined for every $x, y, z \in R$ whose sum is not 0 . Find a point (x_{0}, y_{0}, z_{0}) such that $0<x_{0}^{2}+y_{0}^{2}+z_{0}^{2}<\frac{1}{1999}$ and $1.999<f\left(x_{0}, y_{0}, z_{0}\right)<2$.

3 In a multiple-choice test, there are 4 problems, each having 3 possible answers.
In some group of examinees, it turned out that for every 3 of them, there was a question that each of them gave a different answer to. What is the maximal number of examinees in this group?

