Art of Problem Solving

AoPS Community

Hungary-Israel Binational 2000

www.artofproblemsolving.com/community/c3512
by N.T.TUAN, parmenides51

Day 1

1 Let S be the set of all partitions of 2000 (in a sum of positive integers). For every such partition p, we dene $f(p)$ to be the sum of the number of summands in p and the maximal summand in p. Compute the minimum of $f(p)$ when $p \in S$.

2 Prove or disprove: For any positive integer k there exists an integer $n>1$ such that the binomial coeffcient $\binom{n}{i}$ is divisible by k for any $1 \leq i \leq n-1$.

3 Let $A B C$ be a non-equilateral triangle. The incircle is tangent to the sides $B C, C A, A B$ at A_{1}, B_{1}, C_{1}, respectively, and M is the orthocenter of triangle $A_{1} B_{1} C_{1}$. Prove that M lies on the line through the incenter and circumcenter of $\triangle A B C$.

Day 2

$1 \quad$ Let A and B be two subsets of $S=\{1,2, \ldots, 2000\}$ with $|A| \cdot|B| \geq 3999$. For a set X, let $X-X$ denotes the set $\{s-t \mid s, t \in X, s \neq t\}$. Prove that $(A-A) \cap(B-B)$ is nonempty.

2 For a given integer d, let us dene $S=\left\{m^{2}+d n^{2} \mid m, n \in \mathbb{Z}\right\}$. Suppose that p, q are two elements of S, where p is prime and $p \mid q$. Prove that $r=q / p$ also belongs to S.
$3 \quad$ Let k and l be two given positive integers and $a_{i j}(1 \leq i \leq k, 1 \leq j \leq l)$ be $k l$ positive integers. Show that if $q \geq p>0$, then

$$
\left(\sum_{j=1}^{l}\left(\sum_{i=1}^{k} a_{i j}^{p}\right)^{q / p}\right)^{1 / q} \leq\left(\sum_{i=1}^{k}\left(\sum_{j=1}^{l} a_{i j}^{q}\right)^{p / q}\right)^{1 / p} .
$$

