

AoPS Community

2000 Hungary-Israel Binational

Hungary-Israel Binational 2000

www.artofproblemsolving.com/community/c3512 by N.T.TUAN, parmenides51

Day 1

1	Let S be the set of all partitions of 2000 (in a sum of positive integers). For every such partition p , we dene $f(p)$ to be the sum of the number of summands in p and the maximal summand in p . Compute the minimum of $f(p)$ when $p \in S$.
2	Prove or disprove: For any positive integer k there exists an integer $n > 1$ such that the binomial coeffcient $\binom{n}{i}$ is divisible by k for any $1 \le i \le n - 1$.
3	Let ABC be a non-equilateral triangle. The incircle is tangent to the sides BC, CA, AB at A_1, B_1, C_1 , respectively, and M is the orthocenter of triangle $A_1B_1C_1$. Prove that M lies on the line through the incenter and circumcenter of $\triangle ABC$.
Day 2	
1	Let A and B be two subsets of $S = \{1, 2,, 2000\}$ with $ A \cdot B \ge 3999$. For a set X, let $X - X$ denotes the set $\{s - t s, t \in X, s \neq t\}$. Prove that $(A - A) \cap (B - B)$ is nonempty.
2	For a given integer d , let us dene $S = \{m^2 + dn^2 m, n \in \mathbb{Z}\}$. Suppose that p, q are two elements of S , where p is prime and $p q$. Prove that $r = q/p$ also belongs to S .
3	Let k and l be two given positive integers and $a_{ij}(1 \le i \le k, 1 \le j \le l)$ be kl positive integers. Show that if $q \ge p > 0$, then
	$(\sum_{k=1}^{l} (\sum_{j=1}^{k} a^{p})^{q/p})^{1/q} < (\sum_{j=1}^{k} (\sum_{j=1}^{l} a^{q})^{p/q})^{1/p}$

$$(\sum_{j=1}^{l} (\sum_{i=1}^{k} a_{ij}^{p})^{q/p})^{1/q} \le (\sum_{i=1}^{k} (\sum_{j=1}^{l} a_{ij}^{q})^{p/q})^{1/p}.$$

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱