

AoPS Community

Hungary-Israel Binational 2001

www.artofproblemsolving.com/community/c3513 by N.T.TUAN

-	Individual
---	------------

Day	1
1	Find positive integers x, y, z such that $x > z > 1999 \cdot 2000 \cdot 2001 > y$ and $2000x^2 + y^2 = 2001z^2$.

2 Points A, B, C, D lie on a line l, in that order. Find the locus of points P in the plane for which $\angle APB = \angle CPD$.

3 Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$f(f(x)) = f(x) + x.$$

Day 2	
4	Let $P(x) = x^3 - 3x + 1$. Find the polynomial Q whose roots are the fth powers of the roots of P .
5	In a triangle ABC , B_1 and C_1 are the midpoints of AC and AB respectively, and I is the incenter. The lines B_1I and C_1I meet AB and AC respectively at C_2 and B_2 . If the areas of ΔABC and ΔAB_2C_2 are equal, nd $\angle BAC$.
6	Let be given 32 positive integers with the sum 120 , none of which is greater than 60 . Prove that these integers can be divided into two disjoint subsets with the same sum of elements.
-	Team
1	Here G_n denotes a simple undirected graph with n vertices, K_n denotes the complete graph with n vertices, $K_{n,m}$ the complete bipartite graph whose components have m and n vertices, and C_n a circuit with n vertices. The number of edges in the graph G_n is denoted $e(G_n)$.
	The edges of $K_n (n \ge 3)$ are colored with n colors, and every color is used. Show that there is a triangle whose sides have different colors.
2	Here G_n denotes a simple undirected graph with n vertices, K_n denotes the complete graph with n vertices, $K_{n,m}$ the complete bipartite graph whose components have m and n vertices,

AoPS Community

2001 Hungary-Israel Binational

and C_n a circuit with *n* vertices. The number of edges in the graph G_n is denoted $e(G_n)$.

If $n \ge 5$ and $e(G_n) \ge \frac{n^2}{4} + 2$, prove that G_n contains two triangles that share exactly one vertex.

3 Here G_n denotes a simple undirected graph with n vertices, K_n denotes the complete graph with n vertices, $K_{n,m}$ the complete bipartite graph whose components have m and n vertices, and C_n a circuit with n vertices. The number of edges in the graph G_n is denoted $e(G_n)$.

If $e(G_n) \geq \frac{n\sqrt{n}}{2} + \frac{n}{4}$,prove that G_n contains C_4 .

4 Here G_n denotes a simple undirected graph with n vertices, K_n denotes the complete graph with n vertices, $K_{n,m}$ the complete bipartite graph whose components have m and n vertices, and C_n a circuit with n vertices. The number of edges in the graph G_n is denoted $e(G_n)$.

(a) If G_n does not contain $K_{2,3}$, prove that $e(G_n) \leq \frac{n\sqrt{n}}{\sqrt{2}} + n$. (b) Given $n \geq 16$ distinct points $P_1, ..., P_n$ in the plane, prove that at most $n\sqrt{n}$ of the segments P_iP_j have unit length.

5 Here G_n denotes a simple undirected graph with n vertices, K_n denotes the complete graph with n vertices, $K_{n,m}$ the complete bipartite graph whose components have m and n vertices, and C_n a circuit with n vertices. The number of edges in the graph G_n is denoted $e(G_n)$.

(a) Let p be a prime. Consider the graph whose vertices are the ordered pairs (x, y) with $x, y \in \{0, 1, ..., p-1\}$ and whose edges join vertices (x, y) and (x', y') if and only if $xx' + yy' \equiv 1 \pmod{p}$. Prove that this graph does not contain C_4 .

(b) Prove that for innitely many values n there is a graph G_n with $e(G_n) \ge \frac{n\sqrt{n}}{2} - n$ that does not contain C_4 .

Act of Problem Solving is an ACS WASC Accredited School.