Art of Problem Solving

AoPS Community

Hungary-Israel Binational 2001

www.artofproblemsolving.com/community/c3513
by N.T.TUAN

- Individual

Day 1

1 Find positive integers x, y, z such that $x>z>1999 \cdot 2000 \cdot 2001>y$ and $2000 x^{2}+y^{2}=2001 z^{2}$.

2 Points A, B, C, D lie on a line l, in that order. Find the locus of points P in the plane for which $\angle A P B=\angle C P D$.

3 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$
f(f(x))=f(x)+x
$$

Day 2

4 Let $P(x)=x^{3}-3 x+1$. Find the polynomial Q whose roots are the fth powers of the roots of P.

5 In a triangle $A B C, B_{1}$ and C_{1} are the midpoints of $A C$ and $A B$ respectively, and I is the incenter. The lines $B_{1} I$ and $C_{1} I$ meet $A B$ and $A C$ respectively at C_{2} and B_{2}. If the areas of $\triangle A B C$ and $\triangle A B_{2} C_{2}$ are equal, nd $\angle B A C$.

6 Let be given 32 positive integers with the sum 120 , none of which is greater than 60 . Prove that these integers can be divided into two disjoint subsets with the same sum of elements.

- Team

1 Here G_{n} denotes a simple undirected graph with n vertices, K_{n} denotes the complete graph with n vertices, $K_{n, m}$ the complete bipartite graph whose components have m and n vertices, and C_{n} a circuit with n vertices. The number of edges in the graph G_{n} is denoted $e\left(G_{n}\right)$.

The edges of $K_{n}(n \geq 3)$ are colored with n colors, and every color is used. Show that there is a triangle whose sides have different colors.

2 Here G_{n} denotes a simple undirected graph with n vertices, K_{n} denotes the complete graph with n vertices, $K_{n, m}$ the complete bipartite graph whose components have m and n vertices,
and C_{n} a circuit with n vertices. The number of edges in the graph G_{n} is denoted $e\left(G_{n}\right)$.
If $n \geq 5$ and $e\left(G_{n}\right) \geq \frac{n^{2}}{4}+2$, prove that G_{n} contains two triangles that share exactly one vertex.

3 Here G_{n} denotes a simple undirected graph with n vertices, K_{n} denotes the complete graph with n vertices, $K_{n, m}$ the complete bipartite graph whose components have m and n vertices, and C_{n} a circuit with n vertices. The number of edges in the graph G_{n} is denoted $e\left(G_{n}\right)$.

If $e\left(G_{n}\right) \geq \frac{n \sqrt{n}}{2}+\frac{n}{4}$, prove that G_{n} contains C_{4}.
4 Here G_{n} denotes a simple undirected graph with n vertices, K_{n} denotes the complete graph with n vertices, $K_{n, m}$ the complete bipartite graph whose components have m and n vertices, and C_{n} a circuit with n vertices. The number of edges in the graph G_{n} is denoted $e\left(G_{n}\right)$.
(a) If G_{n} does not contain $K_{2,3}$, prove that $e\left(G_{n}\right) \leq \frac{n \sqrt{n}}{\sqrt{2}}+n$.
(b) Given $n \geq 16$ distinct points P_{1}, \ldots, P_{n} in the plane, prove that at most $n \sqrt{n}$ of the segments $P_{i} P_{j}$ have unit length.
$5 \quad$ Here G_{n} denotes a simple undirected graph with n vertices, K_{n} denotes the complete graph with n vertices, $K_{n, m}$ the complete bipartite graph whose components have m and n vertices, and C_{n} a circuit with n vertices. The number of edges in the graph G_{n} is denoted $e\left(G_{n}\right)$.
(a) Let p be a prime. Consider the graph whose vertices are the ordered pairs (x, y) with $x, y \in$ $\{0,1, \ldots, p-1\}$ and whose edges join vertices (x, y) and (x^{\prime}, y^{\prime}) if and only if $x x^{\prime}+y y^{\prime} \equiv 1$ $(\bmod p)$. Prove that this graph does not contain C_{4}.
(b) Prove that for innitely many values n there is a graph G_{n} with $e\left(G_{n}\right) \geq \frac{n \sqrt{n}}{2}-n$ that does not contain C_{4}.

