Art of Problem Solving

AoPS Community

Hungary-Israel Binational 2002

www.artofproblemsolving.com/community/c3514
by N.T.TUAN

Day 1

1 Find the greatest exponent k for which 2001^{k} divides $2000^{2001^{2002}}+2002^{2001^{2000}}$.
2 Points A_{1}, B_{1}, C_{1} are given inside an equilateral triangle $A B C$ such that $\widehat{B_{1} A B}=\widehat{A 1 B A}=$ $15^{0}, \widehat{C_{1} B C}=\widehat{B_{1} C B}=20^{\circ}, \widehat{A_{1} C A}=\widehat{C_{1} A C}=25^{\circ}$.
Find the angles of triangle $A_{1} B_{1} C_{1}$.
3 Let $p \geq 5$ be a prime number. Prove that there exists a positive integer $a<p-1$ such that neither of $a^{p-1}-1$ and $(a+1)^{p-1}-1$ is divisible by p^{2}.

Day 2

1 Suppose that positive numbers x and y satisfy $x^{3}+y^{4} \leq x^{2}+y^{3}$. Prove that $x^{3}+y^{3} \leq 2$.
2 Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the projections of a point M inside a triangle $A B C$ onto the sides $B C, C A, A B$, respectively. Dene $p(M)=\frac{M A^{\prime} \cdot M B^{\prime} \cdot M C^{\prime}}{M A \cdot M B \cdot M C}$. Find the position of point M that maximizes $p(M)$.

3 Let $p(x)$ be a polynomial with rational coefficients, of degree at least 2 . Suppose that a sequence $\left(r_{n}\right)$ of rational numbers satises $r_{n}=p\left(r_{n+1}\right)$ for every $n \geq 1$. Prove that the sequence $\left(r_{n}\right)$ is periodic.

