

AoPS Community

Hungary-Israel Binational 2003

www.artofproblemsolving.com/community/c3515 by N.T.TUAN

Day 1	
1	$\frac{\text{If } x_1, x_2,, x_n \text{ are positive numbers, prove the inequality } \frac{x_1^3}{x_1^2 + x_1 x_2 + x_2^2} + \frac{x_2^3}{x_2^2 + x_2 x_3 + x_3^2} + + \frac{x_n^3}{x_n^2 + x_n x_1 + x_1^2} + \frac{x_1 + x_2 + + x_n}{x_n^2 + x_1 + x_2 + + x_n}}$
2	Let ABC be an acute-angled triangle. The tangents to its circumcircle at A, B, C form a triangle PQR with $C \in PQ$ and $B \in PR$. Let C_1 be the foot of the altitude from C in ΔABC . Prove that CC_1 bisects QC_1P .
3	Let $d > 0$ be an arbitrary real number. Consider the set $S_n(d) = \{s = \frac{1}{x_1} + \frac{1}{x_2} + + \frac{1}{x_n} x_i \in \mathbb{N}, s < d\}$. Prove that $S_n(d)$ has a maximum element.
Day 2	
1	Two players play the following game. They alternately write divisors of 100! on the blackboard, not repeating any of the numbers written before. The player after whose move the greatest common divisor of the written numbers equals 1, loses the game. Which player has a winning strategy?
2	Let <i>M</i> be a point inside a triangle <i>ABC</i> . The lines <i>AM</i> , <i>BM</i> , <i>CM</i> intersect <i>BC</i> , <i>CA</i> , <i>AB</i> at A_1, B_1, C_1 , respectively. Assume that $S_{MAC_1} + S_{MBA_1} + S_{MCB_1} = S_{MA_1C} + S_{MB_1A} + S_{MC_1B}$. Prove that one of the lines <i>AA</i> ₁ , <i>BB</i> ₁ , <i>CC</i> ₁ is a median of the triangle <i>ABC</i> .
3	Let <i>n</i> be a positive integer. Show that there exist three distinct integers between n^2 and $n^2 + n + 3\sqrt{n}$, such that one of them divides the product of the other two.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬