Art of Problem Solving

AoPS Community

2003 Hungary-Israel Binational

Hungary-Israel Binational 2003

www.artofproblemsolving.com/community/c3515
by N.T.TUAN

Day 1

1 If $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers, prove the inequality $\frac{x_{1}^{3}}{x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}}+\frac{x_{2}^{3}}{x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}}+\ldots+\frac{x_{n}^{3}}{x_{n}^{2}+x_{n} x_{1}+x_{1}^{2}} \geq$ $\frac{x_{1}+x_{2}+\ldots+x_{n}}{3}$.

2 Let $A B C$ be an acute-angled triangle. The tangents to its circumcircle at A, B, C form a triangle $P Q R$ with $C \in P Q$ and $B \in P R$. Let C_{1} be the foot of the altitude from C in $\triangle A B C$. Prove that $C C_{1}$ bisects $\widehat{Q C_{1} P}$.

3 Let $d>0$ be an arbitrary real number. Consider the set $S_{n}(d)=\left\{\left.s=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}} \right\rvert\, x_{i} \in\right.$ $\mathbb{N}, s<d\}$. Prove that $S_{n}(d)$ has a maximum element.

Day 2

1 Two players play the following game. They alternately write divisors of 100 ! on the blackboard, not repeating any of the numbers written before. The player after whose move the greatest common divisor of the written numbers equals 1 , loses the game. Which player has a winning strategy?

2 Let M be a point inside a triangle $A B C$. The lines $A M, B M, C M$ intersect $B C, C A, A B$ at A_{1}, B_{1}, C_{1}, respectively. Assume that $S_{M A C_{1}}+S_{M B A_{1}}+S_{M C B_{1}}=S_{M A_{1} C}+S_{M B_{1} A}+S_{M C_{1} B}$. Prove that one of the lines $A A_{1}, B B_{1}, C C_{1}$ is a median of the triangle $A B C$.

3 Let n be a positive integer. Show that there exist three distinct integers between n^{2} and $n^{2}+n+3 \sqrt{n}$, such that one of them divides the product of the other two.

