Art of Problem Solving

AoPS Community

Hungary-Israel Binational 2005

www.artofproblemsolving.com/community/c3516
by N.T.TUAN

Day 1

1 Squares $A B B_{1} A_{2}$ and $B C C_{1} B_{2}$ are externally drawn on the hypotenuse $A B$ and on the leg $B C$ of a right triangle $A B C$. Show that the lines $C A_{2}$ and $A B_{2}$ meet on the perimeter of a square with the vertices on the perimeter of triangle $A B C$.

2 Let f be an increasing mapping from the family of subsets of a given nite set H into itself, i.e. such that for every $X \subseteq Y \subseteq H$ we have $f(X) \subseteq f(Y) \subseteq H$. Prove that there exists a subset H_{0} of H such that $f\left(H_{0}\right)=H_{0}$.

3 Find all sequences $x_{1}, x_{2}, \ldots, x_{n}$ of distinct positive integers such that
$\frac{1}{2}=\sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$.

Day 2

1 Does there exist a sequence of 2005 consecutive positive integers that contains exactly 25 prime numbers?

2 Let F_{n} be the n - th Fibonacci number (where $F_{1}=F_{2}=1$). Consider the functions $f_{n}(x)=\|$ $\ldots\left\||x|-F_{n}\left|-F_{n-1}\right|-\ldots-F_{2}\left|-F_{1}\right|, g_{n}(x)=|\ldots \| x-1|-1|-\ldots-1|\left(F_{1}+\ldots+F_{n}\right.\right.$ ones $)$.
Show that $f_{n}(x)=g_{n}(x)$ for every real number x.
3 There are seven rods erected at the vertices of a regular heptagonal area. The top of each rod is connected to the top of its second neighbor by a straight piece of wire so that, looking from above, one sees each wire crossing exactly two others. Is it possible to set the respective heights of the rods in such a way that no four tops of the rods are coplanar and each wire passes one of the crossings from above and the other one from below?

