

AoPS Community

2008 Hungary-Israel Binational

Hungary-Israel Binational 2008

www.artofproblemsolving.com/community/c3519 by bambaman, freemind

Day 1	
1	Find the largest value of n, such that there exists a polygon with n sides, 2 adjacent sides of length 1, and all his diagonals have an integer length.
2	For every natural number t , $f(t)$ is the probability that if a fair coin is tossed t times, the number of times we get heads is 2008 more than the number of tails. What is the value of t for which $f(t)$ attains its maximum? (if there is more than one, describe all of them)
3	A rectangle D is partitioned in several (≥ 2) rectangles with sides parallel to those of D . Given that any line parallel to one of the sides of D , and having common points with the interior of D, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with D 's boundary.
	Author: Kei Irie, Japan
Day	2
1	Prove that: $\sum_{i=1}^{n^2} \lfloor \frac{i}{3} \rfloor = \frac{n^2(n^2-1)}{6}$ For all $n \in N$.
2	The sequence a_n is defined as follows: $a_0 = 1, a_1 = 1, a_{n+1} = \frac{1+a_n^2}{a_{n-1}}$. Prove that all the terms of the sequence are integers.
3	P and Q are 2 points in the area bounded by 2 rays, e and f, coming out from a point O. Describe how to construct, with a ruler and a compass only, an isosceles triangle ABC, such that his base AB is on the ray e, the point C is on the ray f, P is on AC, and Q on BC.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱